UNPKG

@jsenv/terminal-recorder

Version:

Record terminal output as .svg, .gif, .webm, .mp4

254 lines (209 loc) 7.25 kB
export const createLzwEncoder = ({ width, height, pixels, colorDepth }) => { var EOF = -1; var imgW; var imgH; var pixAry; var initCodeSize; var remaining; var curPixel; // GIFCOMPR.C - GIF Image compression routines // Lempel-Ziv compression based on 'compress'. GIF modifications by // David Rowley (mgardi@watdcsu.waterloo.edu) // General DEFINEs var BITS = 12; var HSIZE = 5003; // 80% occupancy // GIF Image compression - modified 'compress' // Based on: compress.c - File compression ala IEEE Computer, June 1984. // By Authors: Spencer W. Thomas (decvax!harpo!utah-cs!utah-gr!thomas) // Jim McKie (decvax!mcvax!jim) // Steve Davies (decvax!vax135!petsd!peora!srd) // Ken Turkowski (decvax!decwrl!turtlevax!ken) // James A. Woods (decvax!ihnp4!ames!jaw) // Joe Orost (decvax!vax135!petsd!joe) var n_bits; // number of bits/code var maxbits = BITS; // user settable max # bits/code var maxcode; // maximum code, given n_bits var maxmaxcode = 1 << BITS; // should NEVER generate this code var htab = []; var codetab = []; var hsize = HSIZE; // for dynamic table sizing var free_ent = 0; // first unused entry // block compression parameters -- after all codes are used up, // and compression rate changes, start over. var clear_flg = false; // Algorithm: use open addressing double hashing (no chaining) on the // prefix code / next character combination. We do a variant of Knuth's // algorithm D (vol. 3, sec. 6.4) along with G. Knott's relatively-prime // secondary probe. Here, the modular division first probe is gives way // to a faster exclusive-or manipulation. Also do block compression with // an adaptive reset, whereby the code table is cleared when the compression // ratio decreases, but after the table fills. The variable-length output // codes are re-sized at this point, and a special CLEAR code is generated // for the decompressor. Late addition: construct the table according to // file size for noticeable speed improvement on small files. Please direct // questions about this implementation to ames!jaw. var g_init_bits; var ClearCode; var EOFCode; // output // Output the given code. // Inputs: // code: A n_bits-bit integer. If == -1, then EOF. This assumes // that n_bits =< wordsize - 1. // Outputs: // Outputs code to the file. // Assumptions: // Chars are 8 bits long. // Algorithm: // Maintain a BITS character long buffer (so that 8 codes will // fit in it exactly). Use the VAX insv instruction to insert each // code in turn. When the buffer fills up empty it and start over. var cur_accum = 0; var cur_bits = 0; var masks = [ 0x0000, 0x0001, 0x0003, 0x0007, 0x000f, 0x001f, 0x003f, 0x007f, 0x00ff, 0x01ff, 0x03ff, 0x07ff, 0x0fff, 0x1fff, 0x3fff, 0x7fff, 0xffff, ]; // Number of characters so far in this 'packet' var a_count; // Define the storage for the packet accumulator var accum = []; imgW = width; imgH = height; pixAry = pixels; initCodeSize = Math.max(2, colorDepth); // Add a character to the end of the current packet, and if it is 254 // characters, flush the packet to disk. const char_out = (c, outs) => { accum[a_count++] = c; if (a_count >= 254) flush_char(outs); }; // Clear out the hash table // table clear for block compress const cl_block = (outs) => { cl_hash(hsize); free_ent = ClearCode + 2; clear_flg = true; output(ClearCode, outs); }; // reset code table const cl_hash = (hsize) => { for (var i = 0; i < hsize; ++i) htab[i] = -1; }; // Flush the packet to disk, and reset the accumulator const flush_char = (outs) => { if (a_count > 0) { outs.writeByte(a_count); outs.writeBytes(accum, 0, a_count); a_count = 0; } }; const MAXCODE = (n_bits) => { return (1 << n_bits) - 1; }; // ---------------------------------------------------------------------------- // Return the next pixel from the image // ---------------------------------------------------------------------------- const nextPixel = () => { if (remaining === 0) return EOF; --remaining; var pix = pixAry[curPixel++]; return pix & 0xff; }; const output = (code, outs) => { cur_accum &= masks[cur_bits]; if (cur_bits > 0) cur_accum |= code << cur_bits; else cur_accum = code; cur_bits += n_bits; while (cur_bits >= 8) { char_out(cur_accum & 0xff, outs); cur_accum >>= 8; cur_bits -= 8; } // If the next entry is going to be too big for the code size, // then increase it, if possible. if (free_ent > maxcode || clear_flg) { if (clear_flg) { maxcode = MAXCODE((n_bits = g_init_bits)); clear_flg = false; } else { ++n_bits; if (n_bits === maxbits) maxcode = maxmaxcode; else maxcode = MAXCODE(n_bits); } } if (code === EOFCode) { // At EOF, write the rest of the buffer. while (cur_bits > 0) { char_out(cur_accum & 0xff, outs); cur_accum >>= 8; cur_bits -= 8; } flush_char(outs); } }; const lzwencoder = { compress: (init_bits, outs) => { var fcode; var i; /* = 0 */ var c; var ent; var disp; var hsize_reg; var hshift; // Set up the globals: g_init_bits - initial number of bits g_init_bits = init_bits; // Set up the necessary values clear_flg = false; n_bits = g_init_bits; maxcode = MAXCODE(n_bits); ClearCode = 1 << (init_bits - 1); EOFCode = ClearCode + 1; free_ent = ClearCode + 2; a_count = 0; // clear packet ent = nextPixel(); hshift = 0; for (fcode = hsize; fcode < 65536; fcode *= 2) ++hshift; hshift = 8 - hshift; // set hash code range bound hsize_reg = hsize; cl_hash(hsize_reg); // clear hash table output(ClearCode, outs); outer_loop: while ((c = nextPixel()) !== EOF) { fcode = (c << maxbits) + ent; i = (c << hshift) ^ ent; // xor hashing if (htab[i] === fcode) { ent = codetab[i]; continue; } else if (htab[i] >= 0) { // non-empty slot disp = hsize_reg - i; // secondary hash (after G. Knott) if (i === 0) disp = 1; do { if ((i -= disp) < 0) i += hsize_reg; if (htab[i] === fcode) { ent = codetab[i]; continue outer_loop; } } while (htab[i] >= 0); } output(ent, outs); ent = c; if (free_ent < maxmaxcode) { codetab[i] = free_ent++; // code -> hashtable htab[i] = fcode; } else cl_block(outs); } // Put out the final code. output(ent, outs); output(EOFCode, outs); }, encode: (os) => { os.writeByte(initCodeSize); // write "initial code size" byte remaining = imgW * imgH; // reset navigation variables curPixel = 0; lzwencoder.compress(initCodeSize + 1, os); // compress and write the pixel data os.writeByte(0); // write block terminator }, }; return lzwencoder; };