@joint/core
Version:
JavaScript diagramming library
524 lines (393 loc) • 16.4 kB
JavaScript
import { Rect } from './rect.mjs';
import { Point } from './point.mjs';
import { Line } from './line.mjs';
import { types } from './types.mjs';
import { clonePoints, parsePoints, convexHull } from './points.mjs';
export const Polyline = function(points) {
if (!(this instanceof Polyline)) {
return new Polyline(points);
}
if (typeof points === 'string') {
return new Polyline.parse(points);
}
this.points = (Array.isArray(points) ? points.map(Point) : []);
};
Polyline.parse = function(svgString) {
return new Polyline(parsePoints(svgString));
};
Polyline.fromRect = function(rect) {
return new Polyline([
rect.topLeft(),
rect.topRight(),
rect.bottomRight(),
rect.bottomLeft(),
rect.topLeft(),
]);
};
Polyline.prototype = {
type: types.Polyline,
bbox: function() {
var x1 = Infinity;
var x2 = -Infinity;
var y1 = Infinity;
var y2 = -Infinity;
var points = this.points;
var numPoints = points.length;
if (numPoints === 0) return null; // if points array is empty
for (var i = 0; i < numPoints; i++) {
var point = points[i];
var x = point.x;
var y = point.y;
if (x < x1) x1 = x;
if (x > x2) x2 = x;
if (y < y1) y1 = y;
if (y > y2) y2 = y;
}
return new Rect(x1, y1, x2 - x1, y2 - y1);
},
clone: function() {
return new Polyline(clonePoints(this.points));
},
closestPoint: function(p) {
var cpLength = this.closestPointLength(p);
return this.pointAtLength(cpLength);
},
closestPointLength: function(p) {
var points = this.lengthPoints();
var numPoints = points.length;
if (numPoints === 0) return 0; // if points array is empty
if (numPoints === 1) return 0; // if there is only one point
var cpLength;
var minSqrDistance = Infinity;
var length = 0;
var n = numPoints - 1;
for (var i = 0; i < n; i++) {
var line = new Line(points[i], points[i + 1]);
var lineLength = line.length();
var cpNormalizedLength = line.closestPointNormalizedLength(p);
var cp = line.pointAt(cpNormalizedLength);
var sqrDistance = cp.squaredDistance(p);
if (sqrDistance < minSqrDistance) {
minSqrDistance = sqrDistance;
cpLength = length + (cpNormalizedLength * lineLength);
}
length += lineLength;
}
return cpLength;
},
closestPointNormalizedLength: function(p) {
var cpLength = this.closestPointLength(p);
if (cpLength === 0) return 0; // shortcut
var length = this.length();
if (length === 0) return 0; // prevents division by zero
return cpLength / length;
},
closestPointTangent: function(p) {
var cpLength = this.closestPointLength(p);
return this.tangentAtLength(cpLength);
},
// Returns `true` if the area surrounded by the polyline contains the point `p`.
// Implements the even-odd SVG algorithm (self-intersections are "outside").
// (Uses horizontal rays to the right of `p` to look for intersections.)
// Closes open polylines (always imagines a final closing segment).
containsPoint: function(p) {
var points = this.points;
var numPoints = points.length;
if (numPoints === 0) return false; // shortcut (this polyline has no points)
var x = p.x;
var y = p.y;
// initialize a final closing segment by creating one from last-first points on polyline
var startIndex = numPoints - 1; // start of current polyline segment
var endIndex = 0; // end of current polyline segment
var numIntersections = 0;
var segment = new Line();
var ray = new Line();
var rayEnd = new Point();
for (; endIndex < numPoints; endIndex++) {
var start = points[startIndex];
var end = points[endIndex];
if (p.equals(start)) return true; // shortcut (`p` is a point on polyline)
// current polyline segment
segment.start = start;
segment.end = end;
if (segment.containsPoint(p)) return true; // shortcut (`p` lies on a polyline segment)
// do we have an intersection?
if (((y <= start.y) && (y > end.y)) || ((y > start.y) && (y <= end.y))) {
// this conditional branch IS NOT entered when `segment` is collinear/coincident with `ray`
// (when `y === start.y === end.y`)
// this conditional branch IS entered when `segment` touches `ray` at only one point
// (e.g. when `y === start.y !== end.y`)
// since this branch is entered again for the following segment, the two touches cancel out
var xDifference = (((start.x - x) > (end.x - x)) ? (start.x - x) : (end.x - x));
if (xDifference >= 0) {
// segment lies at least partially to the right of `p`
rayEnd.x = x + xDifference;
rayEnd.y = y; // right
ray.start = p;
ray.end = rayEnd;
if (segment.intersect(ray)) {
// an intersection was detected to the right of `p`
numIntersections++;
}
} // else: `segment` lies completely to the left of `p` (i.e. no intersection to the right)
}
// move to check the next polyline segment
startIndex = endIndex;
}
// returns `true` for odd numbers of intersections (even-odd algorithm)
return ((numIntersections % 2) === 1);
},
close: function() {
const { start, end, points } = this;
if (start && end && !start.equals(end)) {
points.push(start.clone());
}
return this;
},
lengthPoints: function() {
return this.points;
},
convexHull: function() {
return new Polyline(convexHull(this.points));
},
// Checks whether two polylines are exactly the same.
// If `p` is undefined or null, returns false.
equals: function(p) {
if (!p) return false;
var points = this.points;
var otherPoints = p.points;
var numPoints = points.length;
if (otherPoints.length !== numPoints) return false; // if the two polylines have different number of points, they cannot be equal
for (var i = 0; i < numPoints; i++) {
var point = points[i];
var otherPoint = p.points[i];
// as soon as an inequality is found in points, return false
if (!point.equals(otherPoint)) return false;
}
// if no inequality found in points, return true
return true;
},
intersectionWithLine: function(l) {
var line = new Line(l);
var intersections = [];
var points = this.lengthPoints();
var l2 = new Line();
for (var i = 0, n = points.length - 1; i < n; i++) {
l2.start = points[i];
l2.end = points[i + 1];
var int = line.intersectionWithLine(l2);
if (int) intersections.push(int[0]);
}
return (intersections.length > 0) ? intersections : null;
},
isDifferentiable: function() {
var points = this.points;
var numPoints = points.length;
if (numPoints === 0) return false;
var line = new Line();
var n = numPoints - 1;
for (var i = 0; i < n; i++) {
line.start = points[i];
line.end = points[i + 1];
// as soon as a differentiable line is found between two points, return true
if (line.isDifferentiable()) return true;
}
// if no differentiable line is found between pairs of points, return false
return false;
},
length: function() {
var points = this.lengthPoints();
var numPoints = points.length;
if (numPoints === 0) return 0; // if points array is empty
var length = 0;
var n = numPoints - 1;
for (var i = 0; i < n; i++) {
length += points[i].distance(points[i + 1]);
}
return length;
},
pointAt: function(ratio) {
var points = this.lengthPoints();
var numPoints = points.length;
if (numPoints === 0) return null; // if points array is empty
if (numPoints === 1) return points[0].clone(); // if there is only one point
if (ratio <= 0) return points[0].clone();
if (ratio >= 1) return points[numPoints - 1].clone();
var polylineLength = this.length();
var length = polylineLength * ratio;
return this.pointAtLength(length);
},
pointAtLength: function(length) {
var points = this.lengthPoints();
var numPoints = points.length;
if (numPoints === 0) return null; // if points array is empty
if (numPoints === 1) return points[0].clone(); // if there is only one point
var fromStart = true;
if (length < 0) {
fromStart = false; // negative lengths mean start calculation from end point
length = -length; // absolute value
}
var l = 0;
var n = numPoints - 1;
for (var i = 0; i < n; i++) {
var index = (fromStart ? i : (n - 1 - i));
var a = points[index];
var b = points[index + 1];
var line = new Line(a, b);
var d = a.distance(b);
if (length <= (l + d)) {
return line.pointAtLength((fromStart ? 1 : -1) * (length - l));
}
l += d;
}
// if length requested is higher than the length of the polyline, return last endpoint
var lastPoint = (fromStart ? points[numPoints - 1] : points[0]);
return lastPoint.clone();
},
round: function(precision) {
var points = this.points;
var numPoints = points.length;
for (var i = 0; i < numPoints; i++) {
points[i].round(precision);
}
return this;
},
scale: function(sx, sy, origin) {
var points = this.points;
var numPoints = points.length;
for (var i = 0; i < numPoints; i++) {
points[i].scale(sx, sy, origin);
}
return this;
},
simplify: function(opt = {}) {
const points = this.points;
if (points.length < 3) return this; // we need at least 3 points
// TODO: we may also accept startIndex and endIndex to specify where to start and end simplification
// Due to the nature of the algorithm, we do not use 0 as the default value for `threshold`
// because of the rounding errors that can occur when comparing distances.
const threshold = opt.threshold || 1e-10; // = max distance of middle point from chord to be simplified
// start at the beginning of the polyline and go forward
let currentIndex = 0;
// we need at least one intermediate point (3 points) in every iteration
// as soon as that stops being true, we know we reached the end of the polyline
while (points[currentIndex + 2]) {
const firstIndex = currentIndex;
const middleIndex = (currentIndex + 1);
const lastIndex = (currentIndex + 2);
const firstPoint = points[firstIndex];
const middlePoint = points[middleIndex];
const lastPoint = points[lastIndex];
const chord = new Line(firstPoint, lastPoint); // = connection between first and last point
const closestPoint = chord.closestPoint(middlePoint); // = closest point on chord from middle point
const closestPointDistance = closestPoint.distance(middlePoint);
if (closestPointDistance <= threshold) {
// middle point is close enough to the chord = simplify
// 1) remove middle point:
points.splice(middleIndex, 1);
// 2) in next iteration, investigate the newly-created triplet of points
// - do not change `currentIndex`
// = (first point stays, point after removed point becomes middle point)
} else {
// middle point is far from the chord
// 1) preserve middle point
// 2) in next iteration, move `currentIndex` by one step:
currentIndex += 1;
// = (point after first point becomes first point)
}
}
// `points` array was modified in-place
return this;
},
tangentAt: function(ratio) {
var points = this.lengthPoints();
var numPoints = points.length;
if (numPoints === 0) return null; // if points array is empty
if (numPoints === 1) return null; // if there is only one point
if (ratio < 0) ratio = 0;
if (ratio > 1) ratio = 1;
var polylineLength = this.length();
var length = polylineLength * ratio;
return this.tangentAtLength(length);
},
tangentAtLength: function(length) {
var points = this.lengthPoints();
var numPoints = points.length;
if (numPoints === 0) return null; // if points array is empty
if (numPoints === 1) return null; // if there is only one point
var fromStart = true;
if (length < 0) {
fromStart = false; // negative lengths mean start calculation from end point
length = -length; // absolute value
}
var lastValidLine; // differentiable (with a tangent)
var l = 0; // length so far
var n = numPoints - 1;
for (var i = 0; i < n; i++) {
var index = (fromStart ? i : (n - 1 - i));
var a = points[index];
var b = points[index + 1];
var line = new Line(a, b);
var d = a.distance(b);
if (line.isDifferentiable()) { // has a tangent line (line length is not 0)
if (length <= (l + d)) {
return line.tangentAtLength((fromStart ? 1 : -1) * (length - l));
}
lastValidLine = line;
}
l += d;
}
// if length requested is higher than the length of the polyline, return last valid endpoint
if (lastValidLine) {
var ratio = (fromStart ? 1 : 0);
return lastValidLine.tangentAt(ratio);
}
// if no valid line, return null
return null;
},
toString: function() {
return this.points + '';
},
translate: function(tx, ty) {
var points = this.points;
var numPoints = points.length;
for (var i = 0; i < numPoints; i++) {
points[i].translate(tx, ty);
}
return this;
},
// Return svgString that can be used to recreate this line.
serialize: function() {
var points = this.points;
var numPoints = points.length;
if (numPoints === 0) return ''; // if points array is empty
var output = '';
for (var i = 0; i < numPoints; i++) {
var point = points[i];
output += point.x + ',' + point.y + ' ';
}
return output.trim();
}
};
Object.defineProperty(Polyline.prototype, 'start', {
// Getter for the first point of the polyline.
configurable: true,
enumerable: true,
get: function() {
var points = this.points;
var numPoints = points.length;
if (numPoints === 0) return null; // if points array is empty
return this.points[0];
},
});
Object.defineProperty(Polyline.prototype, 'end', {
// Getter for the last point of the polyline.
configurable: true,
enumerable: true,
get: function() {
var points = this.points;
var numPoints = points.length;
if (numPoints === 0) return null; // if points array is empty
return this.points[numPoints - 1];
},
});