UNPKG

@jettoblack/image_mcp

Version:

MCP server for image summarization using OpenAI-compatible chat completion endpoints

424 lines (333 loc) 9.48 kB
# Image Summarization MCP Server A Model Context Protocol (MCP) server that accepts image files and sends them to an OpenAI-compatible chat completion endpoint for analysis, description, and comparison tasks. ## Use Case Many LLMs used for agentic coding are text-only and lack support for image inputs. This tool allows you to use a secondary model dedicated to describing and analyzing images, without having to use a multi-modal LLM for your primary model. It supports both cloud and local LLMs via any server that supports the OpenAI chat completion endpoint (including llama.cpp / llama-swap, Ollama, open-webui, OpenRouter, etc). For local models, gemma3:4b-it-qat works quite well with a relatively small footprint and fast performance (even on CPU-only). ## Features - Accepts images via unified `image_url` parameter with multiple input formats - Supports `custom_prompt` to perform specific tasks other than just general description - Sends images to OpenAI-compatible chat completion endpoints - Returns detailed image descriptions - Configurable endpoint URL, API key, and model - Command-line interface for configuration - Comprehensive error handling - TypeScript support ## Quick install from NPM Add this to your global `mcp_settings.json` or project `mcp.json`: ```json "image_summarization": { "command": "npx", "args": [ "-y", "@jettoblack/image_mcp", "--api-key", "key", "--base-url", "http://localhost:8080/v1", "--model", "gemma3:4b-it-qat", "--timeout", "120000", "--max-retries", "3" ], "timeout": 300 } ``` Replace the base url, API key, model, etc. as required. ## Configuration The MCP server can be configured using environment variables, command-line arguments, or defaults. ### Environment Variables - `OPENAI_API_KEY`: Your API key for the OpenAI-compatible service - `OPENAI_BASE_URL`: The base URL of the OpenAI-compatible service (default: `http://localhost:9292/v1`) - `OPENAI_MODEL`: The model to use for image analysis - `OPENAI_TIMEOUT`: Request timeout in milliseconds (default: 60000). When running local models you may need to increase this. - `OPENAI_MAX_RETRIES`: Maximum number of retry attempts (default: 3) ### Command Line Arguments ```bash npx -y @jettoblack/image_mcp \ --api-key your-api-key \ --base-url https://api.openai.com/v1 \ --model gpt-4-vision-preview \ --timeout 60000 \ --max-retries 5 ``` ### Configuration Priority 1. Command-line arguments 2. Environment variables 3. Default values ## Dev Installation 1. Clone the repository: ```bash git clone https://github.com/jettoblack/image_mcp.git cd image_mcp ``` 2. Install dependencies: ```bash npm install ``` 3. Build the project: ```bash npm run build ``` 4. Starting the Server ```bash node build/index.js ``` The server will start and listen on stdio for MCP protocol communications. ### MCP Tool Installation (local build) Add this to your global mcp_settings.json or project mcp.json: ```json "image_summarizer": { "command": "node", "args": [ "/path/to/image_mcp/build/index.js", "--api-key", "key", "--base-url", "http://localhost:9292/v1", "--model", "gemma3:4b-it-qat", "--timeout", "120000", "--max-retries", "3" ], "timeout": 300, } ``` ## Usage ### MCP Tools The server provides two tools for image analysis: #### `summarize_image` Analyzes and describes a single image in detail. #### Parameters - `image_url` (string): URL to the image file to analyze. Supports: - Absolute file paths - file:// URLs - HTTP/HTTPS URLs (will be downloaded and converted to base64) - Data URLs with base64 encoded image files - `custom_prompt` (string, optional): Custom prompt to use instead of the default image description prompt #### Example Usage Using file path: ```json { "name": "summarize_image", "arguments": { "image_url": "/path/to/your/image.jpg" } } ``` Using file:// URL: ```json { "name": "summarize_image", "arguments": { "image_url": "file:///path/to/your/image.jpg" } } ``` Using HTTP/HTTPS URL: ```json { "name": "summarize_image", "arguments": { "image_url": "https://example.com/image.jpg" } } ``` Using data URL with base64: ```json { "name": "summarize_image", "arguments": { "image_url": "..." } } ``` With custom prompt: ```json { "name": "summarize_image", "arguments": { "image_url": "/path/to/your/image.jpg", "custom_prompt": "What objects are visible in this image?" } } ``` #### `compare_images` Compares 2 or more images and describes their similarities and differences. ##### Parameters - `image_urls` (array of strings): Array of image URLs to compare (minimum 2 images required). Each URL supports: - Absolute file paths - file:// URLs - HTTP/HTTPS URLs (will be downloaded and converted to base64) - Data URLs with base64 encoded image files - `custom_prompt` (string, optional): Custom prompt to use instead of the default image comparison prompt ##### Example Usage Comparing two images: ```json { "name": "compare_images", "arguments": { "image_urls": [ "/path/to/image1.jpg", "/path/to/image2.jpg" ] } } ``` Comparing multiple images with custom prompt: ```json { "name": "compare_images", "arguments": { "image_urls": [ "https://example.com/image1.jpg", "https://example.com/image2.jpg" ], "custom_prompt": "Compare these UI screenshots and describe the differences in color themes." } } ``` ## Testing ### Running Tests Run the test suite: ```bash npm test ``` The test suite includes: - Unit tests for image processing functionality - Integration tests that require a mock server - Tests for both `summarize_image` and `compare_images` tools ### Mock Server Testing The project includes a mock OpenAI-compatible server for testing purposes. 1. Start the mock server in a separate terminal: ```bash node tests/mock-server.js ``` The mock server will start on `http://localhost:9293` and provides endpoints for: - `GET /v1/models` - Lists available models - `POST /v1/chat/completions` - Mock chat completions with image support - `POST /v1/test/image-process` - Test endpoint for image processing validation 2. Set environment variables for the mock server: ```bash export OPENAI_BASE_URL=http://localhost:9293/v1 export OPENAI_API_KEY=test-key export OPENAI_MODEL=test-model-vision ``` 3. Run the integration tests: ```bash npm test tests/integration.test.ts ``` ### Real OpenAI-Compatible Server Testing To test with a real OpenAI-compatible endpoint: 1. Set up your environment variables: ```bash export OPENAI_API_KEY=your-actual-api-key export OPENAI_BASE_URL=https://api.openai.com/v1 export OPENAI_MODEL=gpt-4-vision-preview ``` Or for other OpenAI-compatible services: ```bash export OPENAI_API_KEY=your-service-api-key export OPENAI_BASE_URL=https://your-service-endpoint/v1 export OPENAI_MODEL=your-vision-model ``` 2. Start the MCP server: ```bash node build/index.js ``` 3. Send test requests using an MCP client or test the tools directly. ### Manual Testing You can manually test the MCP server using tools like `curl` or MCP clients: ```bash # Test with a local image file curl -X POST http://localhost:8080/sse \ -H "Content-Type: application/json" \ -d '{ "jsonrpc": "2.0", "id": 1, "method": "tools/call", "params": { "name": "summarize_image", "arguments": { "image_url": "/path/to/your/test/image.jpg" } } }' ``` ## API Reference ### OpenAI-Compatible API Integration The server sends requests to the OpenAI-compatible chat completion endpoint with the following structure: ```json { "model": "your-model", "messages": [ { "role": "user", "content": [ { "type": "text", "text": "Describe this image in detail, including all text." }, { "type": "image_url", "image_url": { "url": "data:image/png;base64,..." } } ] } ], "stream": false } ``` ### Supported Image Formats - JPEG (.jpg, .jpeg) - PNG (.png) - GIF (.gif) - WebP (.webp) - SVG (.svg) - BMP (.bmp) - TIFF (.tiff) ## Error Handling The server includes comprehensive error handling for: - Invalid image files - Unsupported image formats - Missing API keys - Network connectivity issues - API response errors ## Development ### Project Structure ``` src/ ├── config.ts # Configuration management ├── image-processor.ts # Image processing utilities ├── index.ts # Main MCP server └── openai-client.ts # OpenAI-compatible API client ``` ### Building ```bash npm run build ``` ### Testing ```bash npm test ``` ## License This project is licensed under the MIT License. ## Contributing 1. Fork the repository 2. Create a feature branch 3. Make your changes 4. Add tests 5. Submit a pull request ## Support For issues and questions, please open an issue on the GitHub repository. ## Tips Tips / donations always appreciated to help fund future development. * PayPal: [paypal.me/jettoblack](https://paypal.me/jettoblack) * Venmo: [venmo.com/u/jettoblack](https://venmo.com/u/jettoblack) * BTC: bc1qa76jrsvyglxq7t5fxnvfkekjtmp4z82wtm6ywf * ETH: 0x47fc11F09A427540d10a45491d464F02177EAc66