@iden3/js-crypto
Version:
Crypto primitives for iden3
141 lines (112 loc) • 3.84 kB
text/typescript
import { Scalar, F1Field } from '../ff';
// circomlibjs BabyJub
export class BabyJub {
F;
p: bigint;
pm1d2: bigint;
Generator: bigint[];
Base8: bigint[];
order: bigint;
subOrder: bigint;
A: bigint;
D: bigint;
constructor(F: F1Field) {
this.F = F;
this.p = BigInt(
'21888242871839275222246405745257275088548364400416034343698204186575808495617'
);
this.pm1d2 = Scalar.div(Scalar.sub(this.p, Scalar.one), 2n);
this.Generator = [
F.e('995203441582195749578291179787384436505546430278305826713579947235728471134'),
F.e('5472060717959818805561601436314318772137091100104008585924551046643952123905')
];
this.Base8 = [
F.e('5299619240641551281634865583518297030282874472190772894086521144482721001553'),
F.e('16950150798460657717958625567821834550301663161624707787222815936182638968203')
];
this.order = BigInt(
'21888242871839275222246405745257275088614511777268538073601725287587578984328'
);
this.subOrder = Scalar.shiftRight(this.order, 3n);
this.A = F.e('168700');
this.D = F.e('168696');
}
addPoint(a: bigint[], b: bigint[]): [bigint, bigint] {
const F = this.F;
const res = new Array(2);
/* does the equivalent of:
res[0] = bigInt((a[0]*b[1] + b[0]*a[1]) * bigInt(bigInt("1") + d*a[0]*b[0]*a[1]*b[1]).inverse(q)).affine(q);
res[1] = bigInt((a[1]*b[1] - cta*a[0]*b[0]) * bigInt(bigInt("1") - d*a[0]*b[0]*a[1]*b[1]).inverse(q)).affine(q);
*/
const beta = F.mul(a[0], b[1]);
const gamma = F.mul(a[1], b[0]);
const delta = F.mul(F.sub(a[1], F.mul(this.A, a[0])), F.add(b[0], b[1]));
const tau = F.mul(beta, gamma);
const dTau = F.mul(this.D, tau);
res[0] = F.div(F.add(beta, gamma), F.add(F.one, dTau));
res[1] = F.div(F.add(delta, F.sub(F.mul(this.A, beta), gamma)), F.sub(F.one, dTau));
return res as [bigint, bigint];
}
mulPointEScalar(base: bigint[], e: bigint): [bigint, bigint] {
const F = this.F;
let res: [bigint, bigint] = [F.e('0'), F.e('1')];
let rem = e;
let exp = base;
while (!Scalar.isZero(rem)) {
if (Scalar.isOdd(rem)) {
res = this.addPoint(res, exp);
}
exp = this.addPoint(exp, exp);
rem = Scalar.shiftRight(rem, Scalar.one);
}
return res;
}
inSubgroup(P: bigint[]): boolean {
const F = this.F;
if (!this.inCurve(P)) return false;
const res = this.mulPointEScalar(P, this.subOrder);
return F.isZero(res[0]) && F.eq(res[1], F.one);
}
inCurve(P: bigint[]): boolean {
const F = this.F;
const x2 = F.square(P[0]);
const y2 = F.square(P[1]);
if (!F.eq(F.add(F.mul(this.A, x2), y2), F.add(F.one, F.mul(F.mul(x2, y2), this.D))))
return false;
return true;
}
packPoint(P: bigint[]): Uint8Array {
const F = this.F;
const buff = new Uint8Array(32);
F.toRprLE(buff, 0, P[1]);
const n = F.toObject(P[0]);
if (Scalar.gt(n, this.pm1d2)) {
buff[31] = buff[31] | 0x80;
}
return buff;
}
unpackPoint(buff: Uint8Array): [bigint, bigint] | null {
const F = this.F;
let sign = false;
const P: [bigint, bigint] = [BigInt(0), BigInt(0)];
if (buff[31] & 0x80) {
sign = true;
buff[31] = buff[31] & 0x7f;
}
P[1] = F.fromRprLE(buff, 0);
if (Scalar.gt(F.toObject(P[1]), this.p)) return null;
const y2 = F.square(P[1]);
const x2 = F.div(F.sub(F.one, y2), F.sub(this.A, F.mul(this.D, y2)));
const x2h = F.exp(x2, BigInt(F.half));
if (!F.eq(F.one, x2h)) return null;
let x = F.sqrt(x2);
if (x == null) return null;
if (sign) x = F.neg(x);
P[0] = BigInt(x);
return P;
}
}
const F = new F1Field(
BigInt('21888242871839275222246405745257275088548364400416034343698204186575808495617')
);
export const babyJub = new BabyJub(F);