UNPKG

@huggingface/transformers

Version:

State-of-the-art Machine Learning for the web. Run 🤗 Transformers directly in your browser, with no need for a server!

421 lines (388 loc) • 16.5 kB
/** * @file Helper module for using model configs. For more information, see the corresponding * [Python documentation](https://huggingface.co/docs/transformers/main/en/model_doc/auto#transformers.AutoConfig). * * **Example:** Load an `AutoConfig`. * * ```javascript * import { AutoConfig } from '@huggingface/transformers'; * const config = await AutoConfig.from_pretrained('bert-base-uncased'); * console.log(config); * // PretrainedConfig { * // "model_type": "bert", * // "is_encoder_decoder": false, * // "architectures": [ * // "BertForMaskedLM" * // ], * // "vocab_size": 30522 * // "num_attention_heads": 12, * // "num_hidden_layers": 12, * // "hidden_size": 768, * // "max_position_embeddings": 512, * // ... * // } * ``` * * @module configs */ import { pick } from './utils/core.js'; import { getModelJSON, } from './utils/hub.js'; /** * @typedef {import('./utils/hub.js').PretrainedOptions} PretrainedOptions */ /** * @typedef {import('./utils/core.js').ProgressCallback} ProgressCallback */ /** * @typedef {import('./utils/core.js').ProgressInfo} ProgressInfo */ /** * Loads a config from the specified path. * @param {string} pretrained_model_name_or_path The path to the config directory. * @param {PretrainedOptions} options Additional options for loading the config. * @returns {Promise<Object>} A promise that resolves with information about the loaded config. */ async function loadConfig(pretrained_model_name_or_path, options) { return await getModelJSON(pretrained_model_name_or_path, 'config.json', true, options); } /** * * @param {PretrainedConfig} config * @returns {Object} The normalized configuration. */ function getNormalizedConfig(config) { const mapping = {}; let init_normalized_config = {}; switch (config.model_type) { // Sub-configs case 'llava': case 'paligemma': case 'gemma3': case 'florence2': case 'llava_onevision': case 'idefics3': case 'ultravox': case 'smolvlm': // @ts-expect-error TS2339 init_normalized_config = getNormalizedConfig(config.text_config); break; case 'moondream1': // @ts-expect-error TS2339 init_normalized_config = getNormalizedConfig(config.phi_config); break; case 'musicgen': // @ts-expect-error TS2339 init_normalized_config = getNormalizedConfig(config.decoder); break; case 'multi_modality': // @ts-expect-error TS2339 init_normalized_config = getNormalizedConfig(config.language_config); break; // Decoder-only models case 'gpt2': case 'gptj': case 'jais': case 'codegen': case 'gpt_bigcode': mapping['num_heads'] = 'n_head'; mapping['num_layers'] = 'n_layer'; mapping['hidden_size'] = 'n_embd'; break; case 'gpt_neox': case 'stablelm': case 'opt': case 'falcon': mapping['num_heads'] = 'num_attention_heads'; mapping['num_layers'] = 'num_hidden_layers'; mapping['hidden_size'] = 'hidden_size'; break; case 'llama': case 'olmo': case 'olmo2': case 'mobilellm': case 'granite': case 'cohere': case 'mistral': case 'starcoder2': case 'qwen2': case 'qwen2_vl': case 'phi': case 'phi3': case 'phi3_v': mapping['num_heads'] = 'num_key_value_heads'; mapping['num_layers'] = 'num_hidden_layers'; mapping['hidden_size'] = 'hidden_size'; mapping['num_attention_heads'] = 'num_attention_heads'; break; case 'gemma': case 'gemma2': case 'gemma3_text': case 'glm': case 'helium': mapping['num_heads'] = 'num_key_value_heads'; mapping['num_layers'] = 'num_hidden_layers'; mapping['dim_kv'] = 'head_dim'; break; case 'openelm': mapping['num_heads'] = 'num_kv_heads'; mapping['num_layers'] = 'num_transformer_layers'; mapping['dim_kv'] = 'head_dim'; break; case 'gpt_neo': case 'donut-swin': mapping['num_heads'] = 'num_heads'; mapping['num_layers'] = 'num_layers'; mapping['hidden_size'] = 'hidden_size'; break; case 'bloom': mapping['num_heads'] = 'n_head'; mapping['num_layers'] = 'n_layer'; mapping['hidden_size'] = 'hidden_size'; break; case 'mpt': mapping['num_heads'] = 'n_heads'; mapping['num_layers'] = 'n_layers'; mapping['hidden_size'] = 'd_model'; break; case 'exaone': mapping['num_heads'] = 'num_key_value_heads'; mapping['num_layers'] = 'num_layers'; mapping['dim_kv'] = 'head_dim'; mapping['num_attention_heads'] = 'num_attention_heads'; break; // Encoder-decoder models case 't5': case 'mt5': case 'longt5': mapping['num_decoder_layers'] = 'num_decoder_layers'; mapping['num_decoder_heads'] = 'num_heads'; mapping['decoder_dim_kv'] = 'd_kv'; mapping['num_encoder_layers'] = 'num_layers'; mapping['num_encoder_heads'] = 'num_heads'; mapping['encoder_dim_kv'] = 'd_kv'; break; case 'bart': case 'mbart': case 'marian': case 'whisper': case 'lite-whisper': case 'm2m_100': case 'blenderbot': case 'blenderbot-small': case 'florence2_language': mapping['num_decoder_layers'] = 'decoder_layers'; mapping['num_decoder_heads'] = 'decoder_attention_heads'; mapping['decoder_hidden_size'] = 'd_model'; mapping['num_encoder_layers'] = 'encoder_layers'; mapping['num_encoder_heads'] = 'encoder_attention_heads'; mapping['encoder_hidden_size'] = 'd_model'; break; case 'speecht5': mapping['num_decoder_layers'] = 'decoder_layers'; mapping['num_decoder_heads'] = 'decoder_attention_heads'; mapping['decoder_hidden_size'] = 'hidden_size'; mapping['num_encoder_layers'] = 'encoder_layers'; mapping['num_encoder_heads'] = 'encoder_attention_heads'; mapping['encoder_hidden_size'] = 'hidden_size'; break; case 'trocr': mapping['num_encoder_layers'] = mapping['num_decoder_layers'] = 'decoder_layers'; mapping['num_encoder_heads'] = mapping['num_decoder_heads'] = 'decoder_attention_heads'; mapping['encoder_hidden_size'] = mapping['decoder_hidden_size'] = 'd_model'; break; case 'musicgen_decoder': mapping['num_encoder_layers'] = mapping['num_decoder_layers'] = 'num_hidden_layers'; mapping['num_encoder_heads'] = mapping['num_decoder_heads'] = 'num_attention_heads'; mapping['encoder_hidden_size'] = mapping['decoder_hidden_size'] = 'hidden_size'; break; case 'moonshine': mapping['num_decoder_layers'] = 'decoder_num_hidden_layers'; mapping['num_decoder_heads'] = 'decoder_num_key_value_heads'; mapping['num_encoder_layers'] = 'encoder_num_hidden_layers'; mapping['num_encoder_heads'] = 'encoder_num_key_value_heads'; mapping['encoder_hidden_size'] = mapping['decoder_hidden_size'] = 'hidden_size'; break; case 'vision-encoder-decoder': // @ts-expect-error TS2339 const decoderConfig = getNormalizedConfig(config.decoder); const add_encoder_pkv = 'num_decoder_layers' in decoderConfig; const result = pick(config, ['model_type', 'is_encoder_decoder']); if (add_encoder_pkv) { // Decoder is part of an encoder-decoder model result.num_decoder_layers = decoderConfig.num_decoder_layers; result.num_decoder_heads = decoderConfig.num_decoder_heads; result.decoder_hidden_size = decoderConfig.decoder_hidden_size; result.num_encoder_layers = decoderConfig.num_encoder_layers; result.num_encoder_heads = decoderConfig.num_encoder_heads; result.encoder_hidden_size = decoderConfig.encoder_hidden_size; } else { // Decoder is a decoder-only model result.num_layers = decoderConfig.num_layers; result.num_heads = decoderConfig.num_heads; result.hidden_size = decoderConfig.hidden_size; } return result; } // NOTE: If `num_attention_heads` is not set, it is assumed to be equal to `num_heads` const normalized_config = { ...init_normalized_config, ...pick(config, ['model_type', 'multi_query', 'is_encoder_decoder']), }; for (const key in mapping) { normalized_config[key] = config[mapping[key]]; } return normalized_config; } /** * * @param {PretrainedConfig} config * @returns {Record<string, number[]>} */ export function getKeyValueShapes(config, { prefix = 'past_key_values', batch_size=1, } = {}) { /** @type {Record<string, number[]>} */ const decoderFeeds = {}; const normalized_config = config.normalized_config; if (normalized_config.is_encoder_decoder && ( 'num_encoder_heads' in normalized_config && 'num_decoder_heads' in normalized_config )) { const encoder_dim_kv = normalized_config.encoder_dim_kv ?? ( normalized_config.encoder_hidden_size / normalized_config.num_encoder_heads ); const decoder_dim_kv = normalized_config.decoder_dim_kv ?? ( normalized_config.decoder_hidden_size / normalized_config.num_decoder_heads ); const encoder_dims = [batch_size, normalized_config.num_encoder_heads, 0, encoder_dim_kv]; const decoder_dims = [batch_size, normalized_config.num_decoder_heads, 0, decoder_dim_kv]; for (let i = 0; i < normalized_config.num_decoder_layers; ++i) { decoderFeeds[`${prefix}.${i}.encoder.key`] = encoder_dims; decoderFeeds[`${prefix}.${i}.encoder.value`] = encoder_dims; decoderFeeds[`${prefix}.${i}.decoder.key`] = decoder_dims; decoderFeeds[`${prefix}.${i}.decoder.value`] = decoder_dims; } } else { // Decoders const num_heads = normalized_config.num_heads; const num_layers = normalized_config.num_layers; const dim_kv = normalized_config.dim_kv ?? ( normalized_config.hidden_size / (normalized_config.num_attention_heads ?? num_heads) ); if (normalized_config.model_type === 'falcon') { // NOTE: Custom implementation for Falcon const dims = [batch_size * num_heads, 0, dim_kv] for (let i = 0; i < num_layers; ++i) { decoderFeeds[`${prefix}.${i}.key`] = dims; decoderFeeds[`${prefix}.${i}.value`] = dims; } } else if (normalized_config.multi_query) { // e.g., for `gpt_bigcode` const dims = [batch_size * num_heads, 0, 2 * dim_kv] for (let i = 0; i < num_layers; ++i) { decoderFeeds[`${prefix}.${i}.key_value`] = dims; } } else if (normalized_config.model_type === 'bloom') { // NOTE: Custom implementation for Bloom const keyDims = [batch_size * num_heads, dim_kv, 0] // [batch_size x num_heads,64,past_sequence_length] const valueDims = [batch_size * num_heads, 0, dim_kv] // [batch_size x num_heads,past_sequence_length,64] for (let i = 0; i < num_layers; ++i) { decoderFeeds[`${prefix}.${i}.key`] = keyDims; decoderFeeds[`${prefix}.${i}.value`] = valueDims; } } else if (normalized_config.model_type === 'openelm') { for (let i = 0; i < num_layers; ++i) { const dims = [batch_size, num_heads[i], 0, dim_kv] decoderFeeds[`${prefix}.${i}.key`] = dims; decoderFeeds[`${prefix}.${i}.value`] = dims; } } else { // Decoder-only const dims = [batch_size, num_heads, 0, dim_kv] for (let i = 0; i < num_layers; ++i) { decoderFeeds[`${prefix}.${i}.key`] = dims; decoderFeeds[`${prefix}.${i}.value`] = dims; } } } return decoderFeeds; } /** * Base class for all configuration classes. For more information, see the corresponding * [Python documentation](https://huggingface.co/docs/transformers/main/en/main_classes/configuration#transformers.PretrainedConfig). */ export class PretrainedConfig { // NOTE: Typo in original /** @type {string|null} */ model_type = null; /** @type {boolean} */ is_encoder_decoder = false; /** @type {number} */ max_position_embeddings; /** @type {TransformersJSConfig} */ 'transformers.js_config'; /** * Create a new PreTrainedTokenizer instance. * @param {Object} configJSON The JSON of the config. */ constructor(configJSON) { Object.assign(this, configJSON); this.normalized_config = getNormalizedConfig(this); } /** * Loads a pre-trained config from the given `pretrained_model_name_or_path`. * * @param {string} pretrained_model_name_or_path The path to the pre-trained config. * @param {PretrainedOptions} options Additional options for loading the config. * @throws {Error} Throws an error if the config.json is not found in the `pretrained_model_name_or_path`. * * @returns {Promise<PretrainedConfig>} A new instance of the `PretrainedConfig` class. */ static async from_pretrained(pretrained_model_name_or_path, { progress_callback = null, config = null, cache_dir = null, local_files_only = false, revision = 'main', } = {}) { if (config && !(config instanceof PretrainedConfig)) { config = new PretrainedConfig(config); } const data = config ?? await loadConfig(pretrained_model_name_or_path, { progress_callback, config, cache_dir, local_files_only, revision, }) return new this(data); } } /** * Helper class which is used to instantiate pretrained configs with the `from_pretrained` function. * * @example * const config = await AutoConfig.from_pretrained('Xenova/bert-base-uncased'); */ export class AutoConfig { /** @type {typeof PretrainedConfig.from_pretrained} */ static async from_pretrained(...args) { return PretrainedConfig.from_pretrained(...args); } } /** * Transformers.js-specific configuration, possibly present in config.json under the key `transformers.js_config`. * @typedef {Object} TransformersJSConfig * @property {Record<import('./utils/devices.js').DeviceType, DeviceConfig>} [device_config] Device-specific configurations. * @property {import('./utils/tensor.js').DataType|Record<import('./utils/dtypes.js').DataType, import('./utils/tensor.js').DataType>} [kv_cache_dtype] The data type of the key-value cache. * @property {Record<string, number>} [free_dimension_overrides] Override the free dimensions of the model. * See https://onnxruntime.ai/docs/tutorials/web/env-flags-and-session-options.html#freedimensionoverrides * for more information. * @property {import('./utils/devices.js').DeviceType} [device] The default device to use for the model. * @property {import('./utils/dtypes.js').DataType|Record<string, import('./utils/dtypes.js').DataType>} [dtype] The default data type to use for the model. * @property {import('./utils/hub.js').ExternalData|Record<string, import('./utils/hub.js').ExternalData>} [use_external_data_format=false] Whether to load the model using the external data format (used for models >= 2GB in size). */ /** * Device-specific configuration options. * @typedef {Omit<TransformersJSConfig, "device" | "device_config">} DeviceConfig */