UNPKG

@huggingface/transformers

Version:

State-of-the-art Machine Learning for the web. Run 🤗 Transformers directly in your browser, with no need for a server!

484 lines • 21.3 kB
/** * Permutes a tensor according to the provided axes. * @param {any} tensor The input tensor to permute. * @param {Array} axes The axes to permute the tensor along. * @returns {Tensor} The permuted tensor. */ export function permute(tensor: any, axes: any[]): Tensor; /** * Interpolates an Tensor to the given size. * @param {Tensor} input The input tensor to interpolate. Data must be channel-first (i.e., [c, h, w]) * @param {number[]} size The output size of the image * @param {string} mode The interpolation mode * @param {boolean} align_corners Whether to align corners. * @returns {Tensor} The interpolated tensor. */ export function interpolate(input: Tensor, [out_height, out_width]: number[], mode?: string, align_corners?: boolean): Tensor; /** * Down/up samples the input. * Inspired by https://pytorch.org/docs/stable/generated/torch.nn.functional.interpolate.html. * @param {Tensor} input the input tensor * @param {Object} options the options for the interpolation * @param {[number, number]|[number, number, number]|[number, number, number, number]} [options.size=null] output spatial size. * @param {"nearest"|"bilinear"|"bicubic"} [options.mode='bilinear'] algorithm used for upsampling * @returns {Promise<Tensor>} The interpolated tensor. */ export function interpolate_4d(input: Tensor, { size, mode, }?: { size?: [number, number] | [number, number, number] | [number, number, number, number]; mode?: "nearest" | "bilinear" | "bicubic"; }): Promise<Tensor>; /** * Matrix product of two tensors. * Inspired by https://pytorch.org/docs/stable/generated/torch.matmul.html * @param {Tensor} a the first tensor to be multiplied * @param {Tensor} b the second tensor to be multiplied * @returns {Promise<Tensor>} The matrix product of the two tensors. */ export function matmul(a: Tensor, b: Tensor): Promise<Tensor>; /** * Computes the one dimensional Fourier transform of real-valued input. * Inspired by https://pytorch.org/docs/stable/generated/torch.fft.rfft.html * @param {Tensor} x the real input tensor * @param {Tensor} a The dimension along which to take the one dimensional real FFT. * @returns {Promise<Tensor>} the output tensor. */ export function rfft(x: Tensor, a: Tensor): Promise<Tensor>; /** * Returns the k largest elements of the given input tensor. * Inspired by https://pytorch.org/docs/stable/generated/torch.topk.html * @param {Tensor} x the input tensor * @param {number} [k] the k in "top-k" * @returns {Promise<[Tensor, Tensor]>} the output tuple of (Tensor, LongTensor) of top-k elements and their indices. */ export function topk(x: Tensor, k?: number): Promise<[Tensor, Tensor]>; /** * Slice a multidimensional float32 tensor. * @param {Tensor} data: Tensor of data to extract slices from * @param {number[]} starts: 1-D array of starting indices of corresponding axis in axes * @param {number[]} ends: 1-D array of ending indices (exclusive) of corresponding axis in axes * @param {number[]} axes: 1-D array of axes that starts and ends apply to * @param {number[]} [steps]: 1-D array of slice step of corresponding axis in axes. * @returns {Promise<Tensor>} Sliced data tensor. */ export function slice(data: Tensor, starts: number[], ends: number[], axes: number[], steps?: number[]): Promise<Tensor>; /** * Perform mean pooling of the last hidden state followed by a normalization step. * @param {Tensor} last_hidden_state Tensor of shape [batchSize, seqLength, embedDim] * @param {Tensor} attention_mask Tensor of shape [batchSize, seqLength] * @returns {Tensor} Returns a new Tensor of shape [batchSize, embedDim]. */ export function mean_pooling(last_hidden_state: Tensor, attention_mask: Tensor): Tensor; /** * Apply Layer Normalization for last certain number of dimensions. * @param {Tensor} input The input tensor * @param {number[]} normalized_shape input shape from an expected input of size * @param {Object} options The options for the layer normalization * @param {number} [options.eps=1e-5] A value added to the denominator for numerical stability. * @returns {Tensor} The normalized tensor. */ export function layer_norm(input: Tensor, normalized_shape: number[], { eps, }?: { eps?: number; }): Tensor; /** * Concatenates an array of tensors along a specified dimension. * @param {Tensor[]} tensors The array of tensors to concatenate. * @param {number} dim The dimension to concatenate along. * @returns {Tensor} The concatenated tensor. */ export function cat(tensors: Tensor[], dim?: number): Tensor; /** * Stack an array of tensors along a specified dimension. * @param {Tensor[]} tensors The array of tensors to stack. * @param {number} dim The dimension to stack along. * @returns {Tensor} The stacked tensor. */ export function stack(tensors: Tensor[], dim?: number): Tensor; /** * Calculates the standard deviation and mean over the dimensions specified by dim. dim can be a single dimension or `null` to reduce over all dimensions. * @param {Tensor} input the input tenso * @param {number|null} dim the dimension to reduce. If None, all dimensions are reduced. * @param {number} correction difference between the sample size and sample degrees of freedom. Defaults to Bessel's correction, correction=1. * @param {boolean} keepdim whether the output tensor has dim retained or not. * @returns {Tensor[]} A tuple of (std, mean) tensors. */ export function std_mean(input: Tensor, dim?: number | null, correction?: number, keepdim?: boolean): Tensor[]; /** * Returns the mean value of each row of the input tensor in the given dimension dim. * @param {Tensor} input the input tensor. * @param {number|null} dim the dimension to reduce. * @param {boolean} keepdim whether the output tensor has dim retained or not. * @returns {Tensor} A new tensor with means taken along the specified dimension. */ export function mean(input: Tensor, dim?: number | null, keepdim?: boolean): Tensor; /** * Creates a tensor of size size filled with fill_value. The tensor's dtype is inferred from fill_value. * @param {number[]} size A sequence of integers defining the shape of the output tensor. * @param {number|bigint|boolean} fill_value The value to fill the output tensor with. * @returns {Tensor} The filled tensor. */ export function full(size: number[], fill_value: number | bigint | boolean): Tensor; export function full_like(tensor: any, fill_value: any): Tensor; /** * Returns a tensor filled with the scalar value 1, with the shape defined by the variable argument size. * @param {number[]} size A sequence of integers defining the shape of the output tensor. * @returns {Tensor} The ones tensor. */ export function ones(size: number[]): Tensor; /** * Returns a tensor filled with the scalar value 1, with the same size as input. * @param {Tensor} tensor The size of input will determine size of the output tensor. * @returns {Tensor} The ones tensor. */ export function ones_like(tensor: Tensor): Tensor; /** * Returns a tensor filled with the scalar value 0, with the shape defined by the variable argument size. * @param {number[]} size A sequence of integers defining the shape of the output tensor. * @returns {Tensor} The zeros tensor. */ export function zeros(size: number[]): Tensor; /** * Returns a tensor filled with the scalar value 0, with the same size as input. * @param {Tensor} tensor The size of input will determine size of the output tensor. * @returns {Tensor} The zeros tensor. */ export function zeros_like(tensor: Tensor): Tensor; /** * Returns a tensor filled with random numbers from a uniform distribution on the interval [0, 1) * @param {number[]} size A sequence of integers defining the shape of the output tensor. * @returns {Tensor} The random tensor. */ export function rand(size: number[]): Tensor; /** * Quantizes the embeddings tensor to binary or unsigned binary precision. * @param {Tensor} tensor The tensor to quantize. * @param {'binary'|'ubinary'} precision The precision to use for quantization. * @returns {Tensor} The quantized tensor. */ export function quantize_embeddings(tensor: Tensor, precision: "binary" | "ubinary"): Tensor; export const DataTypeMap: Readonly<{ float32: Float32ArrayConstructor; float16: Float16ArrayConstructor | Uint16ArrayConstructor; float64: Float64ArrayConstructor; string: ArrayConstructor; int8: Int8ArrayConstructor; uint8: Uint8ArrayConstructor; int16: Int16ArrayConstructor; uint16: Uint16ArrayConstructor; int32: Int32ArrayConstructor; uint32: Uint32ArrayConstructor; int64: BigInt64ArrayConstructor; uint64: BigUint64ArrayConstructor; bool: Uint8ArrayConstructor; uint4: Uint8ArrayConstructor; int4: Int8ArrayConstructor; }>; /** * @typedef {keyof typeof DataTypeMap} DataType * @typedef {import('./maths.js').AnyTypedArray | any[]} DataArray */ export class Tensor { /** * Create a new Tensor or copy an existing Tensor. * @param {[DataType, DataArray, number[]]|[ONNXTensor]} args */ constructor(...args: [DataType, DataArray, number[]] | [ONNXTensor]); set dims(value: number[]); /** @type {number[]} Dimensions of the tensor. */ get dims(): number[]; /** @type {DataType} Type of the tensor. */ get type(): DataType; /** @type {DataArray} The data stored in the tensor. */ get data(): DataArray; /** @type {number} The number of elements in the tensor. */ get size(): number; /** @type {string} The location of the tensor data. */ get location(): string; ort_tensor: ONNXTensor; dispose(): void; /** * Index into a Tensor object. * @param {number} index The index to access. * @returns {Tensor} The data at the specified index. */ _getitem(index: number): Tensor; /** * @param {number|bigint} item The item to search for in the tensor * @returns {number} The index of the first occurrence of item in the tensor data. */ indexOf(item: number | bigint): number; /** * @param {number} index * @param {number} iterSize * @param {any} iterDims * @returns {Tensor} */ _subarray(index: number, iterSize: number, iterDims: any): Tensor; /** * Returns the value of this tensor as a standard JavaScript Number. This only works * for tensors with one element. For other cases, see `Tensor.tolist()`. * @returns {number|bigint} The value of this tensor as a standard JavaScript Number. * @throws {Error} If the tensor has more than one element. */ item(): number | bigint; /** * Convert tensor data to a n-dimensional JS list * @returns {Array} */ tolist(): any[]; /** * Return a new Tensor with the sigmoid function applied to each element. * @returns {Tensor} The tensor with the sigmoid function applied. */ sigmoid(): Tensor; /** * Applies the sigmoid function to the tensor in place. * @returns {Tensor} Returns `this`. */ sigmoid_(): Tensor; /** * Return a new Tensor with a callback function applied to each element. * @param {Function} callback - The function to apply to each element. It should take three arguments: * the current element, its index, and the tensor's data array. * @returns {Tensor} A new Tensor with the callback function applied to each element. */ map(callback: Function): Tensor; /** * Apply a callback function to each element of the tensor in place. * @param {Function} callback - The function to apply to each element. It should take three arguments: * the current element, its index, and the tensor's data array. * @returns {Tensor} Returns `this`. */ map_(callback: Function): Tensor; /** * Return a new Tensor with every element multiplied by a constant. * @param {number} val The value to multiply by. * @returns {Tensor} The new tensor. */ mul(val: number): Tensor; /** * Multiply the tensor by a constant in place. * @param {number} val The value to multiply by. * @returns {Tensor} Returns `this`. */ mul_(val: number): Tensor; /** * Return a new Tensor with every element divided by a constant. * @param {number} val The value to divide by. * @returns {Tensor} The new tensor. */ div(val: number): Tensor; /** * Divide the tensor by a constant in place. * @param {number} val The value to divide by. * @returns {Tensor} Returns `this`. */ div_(val: number): Tensor; /** * Return a new Tensor with every element added by a constant. * @param {number} val The value to add by. * @returns {Tensor} The new tensor. */ add(val: number): Tensor; /** * Add the tensor by a constant in place. * @param {number} val The value to add by. * @returns {Tensor} Returns `this`. */ add_(val: number): Tensor; /** * Return a new Tensor with every element subtracted by a constant. * @param {number} val The value to subtract by. * @returns {Tensor} The new tensor. */ sub(val: number): Tensor; /** * Subtract the tensor by a constant in place. * @param {number} val The value to subtract by. * @returns {Tensor} Returns `this`. */ sub_(val: number): Tensor; /** * Creates a deep copy of the current Tensor. * @returns {Tensor} A new Tensor with the same type, data, and dimensions as the original. */ clone(): Tensor; /** * Performs a slice operation on the Tensor along specified dimensions. * * Consider a Tensor that has a dimension of [4, 7]: * ``` * [ 1, 2, 3, 4, 5, 6, 7] * [ 8, 9, 10, 11, 12, 13, 14] * [15, 16, 17, 18, 19, 20, 21] * [22, 23, 24, 25, 26, 27, 28] * ``` * We can slice against the two dims of row and column, for instance in this * case we can start at the second element, and return to the second last, * like this: * ``` * tensor.slice([1, -1], [1, -1]); * ``` * which would return: * ``` * [ 9, 10, 11, 12, 13 ] * [ 16, 17, 18, 19, 20 ] * ``` * * @param {...(number|number[]|null)} slices The slice specifications for each dimension. * - If a number is given, then a single element is selected. * - If an array of two numbers is given, then a range of elements [start, end (exclusive)] is selected. * - If null is given, then the entire dimension is selected. * @returns {Tensor} A new Tensor containing the selected elements. * @throws {Error} If the slice input is invalid. */ slice(...slices: (number | number[] | null)[]): Tensor; /** * Return a permuted version of this Tensor, according to the provided dimensions. * @param {...number} dims Dimensions to permute. * @returns {Tensor} The permuted tensor. */ permute(...dims: number[]): Tensor; transpose(...dims: any[]): Tensor; /** * Returns the sum of each row of the input tensor in the given dimension dim. * * @param {number} [dim=null] The dimension or dimensions to reduce. If `null`, all dimensions are reduced. * @param {boolean} keepdim Whether the output tensor has `dim` retained or not. * @returns The summed tensor */ sum(dim?: number, keepdim?: boolean): Tensor; /** * Returns the matrix norm or vector norm of a given tensor. * @param {number|string} [p='fro'] The order of norm * @param {number} [dim=null] Specifies which dimension of the tensor to calculate the norm across. * If dim is None, the norm will be calculated across all dimensions of input. * @param {boolean} [keepdim=false] Whether the output tensors have dim retained or not. * @returns {Tensor} The norm of the tensor. */ norm(p?: number | string, dim?: number, keepdim?: boolean): Tensor; /** * Performs `L_p` normalization of inputs over specified dimension. Operates in place. * @param {number} [p=2] The exponent value in the norm formulation * @param {number} [dim=1] The dimension to reduce * @returns {Tensor} `this` for operation chaining. */ normalize_(p?: number, dim?: number): Tensor; /** * Performs `L_p` normalization of inputs over specified dimension. * @param {number} [p=2] The exponent value in the norm formulation * @param {number} [dim=1] The dimension to reduce * @returns {Tensor} The normalized tensor. */ normalize(p?: number, dim?: number): Tensor; /** * Compute and return the stride of this tensor. * Stride is the jump necessary to go from one element to the next one in the specified dimension dim. * @returns {number[]} The stride of this tensor. */ stride(): number[]; /** * Returns a tensor with all specified dimensions of input of size 1 removed. * * NOTE: The returned tensor shares the storage with the input tensor, so changing the contents of one will change the contents of the other. * If you would like a copy, use `tensor.clone()` before squeezing. * * @param {number|number[]} [dim=null] If given, the input will be squeezed only in the specified dimensions. * @returns {Tensor} The squeezed tensor */ squeeze(dim?: number | number[]): Tensor; /** * In-place version of @see {@link Tensor.squeeze} */ squeeze_(dim?: any): this; /** * Returns a new tensor with a dimension of size one inserted at the specified position. * * NOTE: The returned tensor shares the same underlying data with this tensor. * * @param {number} dim The index at which to insert the singleton dimension * @returns {Tensor} The unsqueezed tensor */ unsqueeze(dim?: number): Tensor; /** * In-place version of @see {@link Tensor.unsqueeze} */ unsqueeze_(dim?: any): this; /** * In-place version of @see {@link Tensor.flatten} */ flatten_(start_dim?: number, end_dim?: number): this; /** * Flattens input by reshaping it into a one-dimensional tensor. * If `start_dim` or `end_dim` are passed, only dimensions starting with `start_dim` * and ending with `end_dim` are flattened. The order of elements in input is unchanged. * @param {number} start_dim the first dim to flatten * @param {number} end_dim the last dim to flatten * @returns {Tensor} The flattened tensor. */ flatten(start_dim?: number, end_dim?: number): Tensor; /** * Returns a new tensor with the same data as the `self` tensor but of a different `shape`. * @param {...number} dims the desired size * @returns {Tensor} The tensor with the same data but different shape */ view(...dims: number[]): Tensor; neg_(): this; neg(): Tensor; /** * Computes input > val element-wise. * @param {number} val The value to compare with. * @returns {Tensor} A boolean tensor that is `true` where input is greater than other and `false` elsewhere. */ gt(val: number): Tensor; /** * Computes input < val element-wise. * @param {number} val The value to compare with. * @returns {Tensor} A boolean tensor that is `true` where input is less than other and `false` elsewhere. */ lt(val: number): Tensor; /** * In-place version of @see {@link Tensor.clamp} */ clamp_(min: any, max: any): this; /** * Clamps all elements in input into the range [ min, max ] * @param {number} min lower-bound of the range to be clamped to * @param {number} max upper-bound of the range to be clamped to * @returns {Tensor} the output tensor. */ clamp(min: number, max: number): Tensor; /** * In-place version of @see {@link Tensor.round} */ round_(): this; /** * Rounds elements of input to the nearest integer. * @returns {Tensor} the output tensor. */ round(): Tensor; mean(dim?: any, keepdim?: boolean): Tensor; min(dim?: any, keepdim?: boolean): Tensor; max(dim?: any, keepdim?: boolean): Tensor; argmin(dim?: any, keepdim?: boolean): Tensor; argmax(dim?: any, keepdim?: boolean): Tensor; /** * Performs Tensor dtype conversion. * @param {DataType} type The desired data type. * @returns {Tensor} The converted tensor. */ to(type: DataType): Tensor; /** * Returns an iterator object for iterating over the tensor data in row-major order. * If the tensor has more than one dimension, the iterator will yield subarrays. * @returns {Iterator} An iterator object for iterating over the tensor data in row-major order. */ [Symbol.iterator](): Iterator<any, any, any>; } /** * This creates a nested array of a given type and depth (see examples). */ export type NestArray<T, Depth extends number, Acc extends never[] = []> = Acc["length"] extends Depth ? T : NestArray<T[], Depth, [...Acc, never]>; export type DataType = keyof typeof DataTypeMap; export type DataArray = import("./maths.js").AnyTypedArray | any[]; import { Tensor as ONNXTensor } from '../backends/onnx.js'; //# sourceMappingURL=tensor.d.ts.map