UNPKG

@huggingface/tasks

Version:
75 lines (72 loc) 1.85 kB
import type { TaskDataCustom } from "../index.js"; const taskData: TaskDataCustom = { datasets: [ { description: "Multiple-choice questions and answers about videos.", id: "lmms-lab/Video-MME", }, { description: "A dataset of instructions and question-answer pairs about videos.", id: "lmms-lab/VideoChatGPT", }, { description: "Large video understanding dataset.", id: "HuggingFaceFV/finevideo", }, ], demo: { inputs: [ { filename: "video-text-to-text-input.gif", type: "img", }, { label: "Text Prompt", content: "What is happening in this video?", type: "text", }, ], outputs: [ { label: "Answer", content: "The video shows a series of images showing a fountain with water jets and a variety of colorful flowers and butterflies in the background.", type: "text", }, ], }, metrics: [], models: [ { description: "A robust video-text-to-text model.", id: "Vision-CAIR/LongVU_Qwen2_7B", }, { description: "Strong video-text-to-text model with reasoning capabilities.", id: "GoodiesHere/Apollo-LMMs-Apollo-7B-t32", }, { description: "Strong video-text-to-text model.", id: "HuggingFaceTB/SmolVLM2-2.2B-Instruct", }, ], spaces: [ { description: "An application to chat with a video-text-to-text model.", id: "llava-hf/video-llava", }, { description: "A leaderboard for various video-text-to-text models.", id: "opencompass/openvlm_video_leaderboard", }, { description: "An application to generate highlights from a video.", id: "HuggingFaceTB/SmolVLM2-HighlightGenerator", }, ], summary: "Video-text-to-text models take in a video and a text prompt and output text. These models are also called video-language models.", widgetModels: [""], youtubeId: "", }; export default taskData;