UNPKG

@huggingface/tasks

Version:
65 lines (62 loc) 1.75 kB
import type { TaskDataCustom } from "../index.js"; const taskData: TaskDataCustom = { datasets: [ { description: "ImageNet-1K is a image classification dataset in which images are used to train image-feature-extraction models.", id: "imagenet-1k", }, ], demo: { inputs: [ { filename: "mask-generation-input.png", type: "img", }, ], outputs: [ { table: [ ["Dimension 1", "Dimension 2", "Dimension 3"], ["0.21236686408519745", "1.0919708013534546", "0.8512550592422485"], ["0.809657871723175", "-0.18544459342956543", "-0.7851548194885254"], ["1.3103108406066895", "-0.2479034662246704", "-0.9107287526130676"], ["1.8536205291748047", "-0.36419737339019775", "0.09717650711536407"], ], type: "tabular", }, ], }, metrics: [], models: [ { description: "A powerful image feature extraction model.", id: "timm/vit_large_patch14_dinov2.lvd142m", }, { description: "A strong image feature extraction model.", id: "nvidia/MambaVision-T-1K", }, { description: "A robust image feature extraction model.", id: "facebook/dino-vitb16", }, { description: "Cutting-edge image feature extraction model.", id: "apple/aimv2-large-patch14-336-distilled", }, { description: "Strong image feature extraction model that can be used on images and documents.", id: "OpenGVLab/InternViT-6B-448px-V1-2", }, ], spaces: [ { description: "A leaderboard to evaluate different image-feature-extraction models on classification performances", id: "timm/leaderboard", }, ], summary: "Image feature extraction is the task of extracting features learnt in a computer vision model.", widgetModels: [], }; export default taskData;