@huggingface/tasks
Version:
List of ML tasks for huggingface.co/tasks
59 lines (58 loc) • 1.8 kB
JSON
{
"$id": "/inference/schemas/feature-extraction/input.json",
"$schema": "http://json-schema.org/draft-06/schema#",
"description": "Feature Extraction Input.\n\nAuto-generated from TEI specs.\nFor more details, check out https://github.com/huggingface/huggingface.js/blob/main/packages/tasks/scripts/inference-tei-import.ts.",
"title": "FeatureExtractionInput",
"type": "object",
"required": ["inputs"],
"properties": {
"inputs": {
"title": "FeatureExtractionInputs",
"description": "The text or list of texts to embed.",
"oneOf": [
{
"type": "string"
},
{
"type": "array",
"items": {
"type": "string"
}
}
]
},
"normalize": {
"type": "boolean",
"default": "true",
"example": "true"
},
"prompt_name": {
"type": "string",
"description": "The name of the prompt that should be used by for encoding. If not set, no prompt\nwill be applied.\n\nMust be a key in the `sentence-transformers` configuration `prompts` dictionary.\n\nFor example if ``prompt_name`` is \"query\" and the ``prompts`` is {\"query\": \"query: \", ...},\nthen the sentence \"What is the capital of France?\" will be encoded as\n\"query: What is the capital of France?\" because the prompt text will be prepended before\nany text to encode.",
"default": "null",
"example": "null",
"nullable": true
},
"truncate": {
"type": "boolean",
"default": "false",
"example": "false",
"nullable": true
},
"truncation_direction": {
"allOf": [
{
"$ref": "#/$defs/FeatureExtractionInputTruncationDirection"
}
],
"default": "right"
}
},
"$defs": {
"FeatureExtractionInputTruncationDirection": {
"type": "string",
"enum": ["left", "right"],
"title": "FeatureExtractionInputTruncationDirection"
}
}
}