@huggingface/tasks
Version:
List of ML tasks for huggingface.co/tasks
1,591 lines (1,255 loc) • 73 kB
text/typescript
import type { ModelData } from "./model-data.js";
import type { WidgetExampleTextInput, WidgetExampleSentenceSimilarityInput } from "./widget-example.js";
import { LIBRARY_TASK_MAPPING } from "./library-to-tasks.js";
import { getModelInputSnippet } from "./snippets/inputs.js";
import type { ChatCompletionInputMessage } from "./tasks/index.js";
import { stringifyMessages } from "./snippets/common.js";
const TAG_CUSTOM_CODE = "custom_code";
function nameWithoutNamespace(modelId: string): string {
const splitted = modelId.split("/");
return splitted.length === 1 ? splitted[0] : splitted[1];
}
const escapeStringForJson = (str: string): string => JSON.stringify(str).slice(1, -1); // slice is needed to remove surrounding quotes added by JSON.stringify
//#region snippets
export const adapters = (model: ModelData): string[] => [
`from adapters import AutoAdapterModel
model = AutoAdapterModel.from_pretrained("${model.config?.adapter_transformers?.model_name}")
model.load_adapter("${model.id}", set_active=True)`,
];
const allennlpUnknown = (model: ModelData) => [
`import allennlp_models
from allennlp.predictors.predictor import Predictor
predictor = Predictor.from_path("hf://${model.id}")`,
];
const allennlpQuestionAnswering = (model: ModelData) => [
`import allennlp_models
from allennlp.predictors.predictor import Predictor
predictor = Predictor.from_path("hf://${model.id}")
predictor_input = {"passage": "My name is Wolfgang and I live in Berlin", "question": "Where do I live?"}
predictions = predictor.predict_json(predictor_input)`,
];
export const allennlp = (model: ModelData): string[] => {
if (model.tags.includes("question-answering")) {
return allennlpQuestionAnswering(model);
}
return allennlpUnknown(model);
};
export const araclip = (model: ModelData): string[] => [
`from araclip import AraClip
model = AraClip.from_pretrained("${model.id}")`,
];
export const asteroid = (model: ModelData): string[] => [
`from asteroid.models import BaseModel
model = BaseModel.from_pretrained("${model.id}")`,
];
export const audioseal = (model: ModelData): string[] => {
const watermarkSnippet = `# Watermark Generator
from audioseal import AudioSeal
model = AudioSeal.load_generator("${model.id}")
# pass a tensor (tensor_wav) of shape (batch, channels, samples) and a sample rate
wav, sr = tensor_wav, 16000
watermark = model.get_watermark(wav, sr)
watermarked_audio = wav + watermark`;
const detectorSnippet = `# Watermark Detector
from audioseal import AudioSeal
detector = AudioSeal.load_detector("${model.id}")
result, message = detector.detect_watermark(watermarked_audio, sr)`;
return [watermarkSnippet, detectorSnippet];
};
function get_base_diffusers_model(model: ModelData): string {
return model.cardData?.base_model?.toString() ?? "fill-in-base-model";
}
function get_prompt_from_diffusers_model(model: ModelData): string | undefined {
const prompt = (model.widgetData?.[0] as WidgetExampleTextInput | undefined)?.text ?? model.cardData?.instance_prompt;
if (prompt) {
return escapeStringForJson(prompt);
}
}
export const ben2 = (model: ModelData): string[] => [
`import requests
from PIL import Image
from ben2 import AutoModel
url = "https://huggingface.co/datasets/mishig/sample_images/resolve/main/teapot.jpg"
image = Image.open(requests.get(url, stream=True).raw)
model = AutoModel.from_pretrained("${model.id}")
model.to("cuda").eval()
foreground = model.inference(image)
`,
];
export const bertopic = (model: ModelData): string[] => [
`from bertopic import BERTopic
model = BERTopic.load("${model.id}")`,
];
export const bm25s = (model: ModelData): string[] => [
`from bm25s.hf import BM25HF
retriever = BM25HF.load_from_hub("${model.id}")`,
];
export const chatterbox = (): string[] => [
`# pip install chatterbox-tts
import torchaudio as ta
from chatterbox.tts import ChatterboxTTS
model = ChatterboxTTS.from_pretrained(device="cuda")
text = "Ezreal and Jinx teamed up with Ahri, Yasuo, and Teemo to take down the enemy's Nexus in an epic late-game pentakill."
wav = model.generate(text)
ta.save("test-1.wav", wav, model.sr)
# If you want to synthesize with a different voice, specify the audio prompt
AUDIO_PROMPT_PATH="YOUR_FILE.wav"
wav = model.generate(text, audio_prompt_path=AUDIO_PROMPT_PATH)
ta.save("test-2.wav", wav, model.sr)`,
];
export const chronos_forecasting = (model: ModelData): string[] => {
const installSnippet = `pip install chronos-forecasting`;
const exampleSnippet = `import pandas as pd
from chronos import BaseChronosPipeline
pipeline = BaseChronosPipeline.from_pretrained("${model.id}", device_map="cuda")
# Load historical data
context_df = pd.read_csv("https://autogluon.s3.us-west-2.amazonaws.com/datasets/timeseries/misc/AirPassengers.csv")
# Generate predictions
pred_df = pipeline.predict_df(
context_df,
prediction_length=36, # Number of steps to forecast
quantile_levels=[0.1, 0.5, 0.9], # Quantiles for probabilistic forecast
id_column="item_id", # Column identifying different time series
timestamp_column="Month", # Column with datetime information
target="#Passengers", # Column(s) with time series values to predict
)`;
return [installSnippet, exampleSnippet];
};
export const sap_rpt_one_oss = (): string[] => {
const installSnippet = `pip install git+https://github.com/SAP-samples/sap-rpt-1-oss`;
const classificationSnippet = `# Run a classification task
from sklearn.datasets import load_breast_cancer
from sklearn.metrics import accuracy_score
from sklearn.model_selection import train_test_split
from sap_rpt_oss import SAP_RPT_OSS_Classifier
# Load sample data
X, y = load_breast_cancer(return_X_y=True)
X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.5, random_state=42)
# Initialize a classifier, 8k context and 8-fold bagging gives best performance, reduce if running out of memory
clf = SAP_RPT_OSS_Classifier(max_context_size=8192, bagging=8)
clf.fit(X_train, y_train)
# Predict probabilities
prediction_probabilities = clf.predict_proba(X_test)
# Predict labels
predictions = clf.predict(X_test)
print("Accuracy", accuracy_score(y_test, predictions))`;
const regressionsSnippet = `# Run a regression task
from sklearn.datasets import fetch_openml
from sklearn.metrics import r2_score
from sklearn.model_selection import train_test_split
from sap_rpt_oss import SAP_RPT_OSS_Regressor
# Load sample data
df = fetch_openml(data_id=531, as_frame=True)
X = df.data
y = df.target.astype(float)
# Train-test split
X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.5, random_state=42)
# Initialize the regressor, 8k context and 8-fold bagging gives best performance, reduce if running out of memory
regressor = SAP_RPT_OSS_Regressor(max_context_size=8192, bagging=8)
regressor.fit(X_train, y_train)
# Predict on the test set
predictions = regressor.predict(X_test)
r2 = r2_score(y_test, predictions)
print("R² Score:", r2)`;
return [installSnippet, classificationSnippet, regressionsSnippet];
};
export const cxr_foundation = (): string[] => [
`# pip install git+https://github.com/Google-Health/cxr-foundation.git#subdirectory=python
# Load image as grayscale (Stillwaterising, CC0, via Wikimedia Commons)
import requests
from PIL import Image
from io import BytesIO
image_url = "https://upload.wikimedia.org/wikipedia/commons/c/c8/Chest_Xray_PA_3-8-2010.png"
img = Image.open(requests.get(image_url, headers={'User-Agent': 'Demo'}, stream=True).raw).convert('L')
# Run inference
from clientside.clients import make_hugging_face_client
cxr_client = make_hugging_face_client('cxr_model')
print(cxr_client.get_image_embeddings_from_images([img]))`,
];
export const depth_anything_v2 = (model: ModelData): string[] => {
let encoder: string;
let features: string;
let out_channels: string;
encoder = "<ENCODER>";
features = "<NUMBER_OF_FEATURES>";
out_channels = "<OUT_CHANNELS>";
if (model.id === "depth-anything/Depth-Anything-V2-Small") {
encoder = "vits";
features = "64";
out_channels = "[48, 96, 192, 384]";
} else if (model.id === "depth-anything/Depth-Anything-V2-Base") {
encoder = "vitb";
features = "128";
out_channels = "[96, 192, 384, 768]";
} else if (model.id === "depth-anything/Depth-Anything-V2-Large") {
encoder = "vitl";
features = "256";
out_channels = "[256, 512, 1024, 1024";
}
return [
`
# Install from https://github.com/DepthAnything/Depth-Anything-V2
# Load the model and infer depth from an image
import cv2
import torch
from depth_anything_v2.dpt import DepthAnythingV2
# instantiate the model
model = DepthAnythingV2(encoder="${encoder}", features=${features}, out_channels=${out_channels})
# load the weights
filepath = hf_hub_download(repo_id="${model.id}", filename="depth_anything_v2_${encoder}.pth", repo_type="model")
state_dict = torch.load(filepath, map_location="cpu")
model.load_state_dict(state_dict).eval()
raw_img = cv2.imread("your/image/path")
depth = model.infer_image(raw_img) # HxW raw depth map in numpy
`,
];
};
export const depth_pro = (model: ModelData): string[] => {
const installSnippet = `# Download checkpoint
pip install huggingface-hub
huggingface-cli download --local-dir checkpoints ${model.id}`;
const inferenceSnippet = `import depth_pro
# Load model and preprocessing transform
model, transform = depth_pro.create_model_and_transforms()
model.eval()
# Load and preprocess an image.
image, _, f_px = depth_pro.load_rgb("example.png")
image = transform(image)
# Run inference.
prediction = model.infer(image, f_px=f_px)
# Results: 1. Depth in meters
depth = prediction["depth"]
# Results: 2. Focal length in pixels
focallength_px = prediction["focallength_px"]`;
return [installSnippet, inferenceSnippet];
};
export const derm_foundation = (): string[] => [
`from huggingface_hub import from_pretrained_keras
import tensorflow as tf, requests
# Load and format input
IMAGE_URL = "https://storage.googleapis.com/dx-scin-public-data/dataset/images/3445096909671059178.png"
input_tensor = tf.train.Example(
features=tf.train.Features(
feature={
"image/encoded": tf.train.Feature(
bytes_list=tf.train.BytesList(value=[requests.get(IMAGE_URL, stream=True).content])
)
}
)
).SerializeToString()
# Load model and run inference
loaded_model = from_pretrained_keras("google/derm-foundation")
infer = loaded_model.signatures["serving_default"]
print(infer(inputs=tf.constant([input_tensor])))`,
];
export const dia = (model: ModelData): string[] => [
`import soundfile as sf
from dia.model import Dia
model = Dia.from_pretrained("${model.id}")
text = "[S1] Dia is an open weights text to dialogue model. [S2] You get full control over scripts and voices. [S1] Wow. Amazing. (laughs) [S2] Try it now on Git hub or Hugging Face."
output = model.generate(text)
sf.write("simple.mp3", output, 44100)`,
];
export const dia2 = (model: ModelData): string[] => [
`from dia2 import Dia2, GenerationConfig, SamplingConfig
dia = Dia2.from_repo("${model.id}", device="cuda", dtype="bfloat16")
config = GenerationConfig(
cfg_scale=2.0,
audio=SamplingConfig(temperature=0.8, top_k=50),
use_cuda_graph=True,
)
result = dia.generate("[S1] Hello Dia2!", config=config, output_wav="hello.wav", verbose=True)
`,
];
export const describe_anything = (model: ModelData): string[] => [
`# pip install git+https://github.com/NVlabs/describe-anything
from huggingface_hub import snapshot_download
from dam import DescribeAnythingModel
snapshot_download(${model.id}, local_dir="checkpoints")
dam = DescribeAnythingModel(
model_path="checkpoints",
conv_mode="v1",
prompt_mode="focal_prompt",
)`,
];
const diffusers_install = "pip install -U diffusers transformers accelerate";
const diffusersDefaultPrompt = "Astronaut in a jungle, cold color palette, muted colors, detailed, 8k";
const diffusersImg2ImgDefaultPrompt = "Turn this cat into a dog";
const diffusersVideoDefaultPrompt = "A man with short gray hair plays a red electric guitar.";
const diffusers_default = (model: ModelData) => [
`import torch
from diffusers import DiffusionPipeline
# switch to "mps" for apple devices
pipe = DiffusionPipeline.from_pretrained("${model.id}", dtype=torch.bfloat16, device_map="cuda")
prompt = "${get_prompt_from_diffusers_model(model) ?? diffusersDefaultPrompt}"
image = pipe(prompt).images[0]`,
];
const diffusers_image_to_image = (model: ModelData) => [
`import torch
from diffusers import DiffusionPipeline
from diffusers.utils import load_image
# switch to "mps" for apple devices
pipe = DiffusionPipeline.from_pretrained("${model.id}", dtype=torch.bfloat16, device_map="cuda")
prompt = "${get_prompt_from_diffusers_model(model) ?? diffusersImg2ImgDefaultPrompt}"
input_image = load_image("https://huggingface.co/datasets/huggingface/documentation-images/resolve/main/diffusers/cat.png")
image = pipe(image=input_image, prompt=prompt).images[0]`,
];
const diffusers_image_to_video = (model: ModelData) => [
`import torch
from diffusers import DiffusionPipeline
from diffusers.utils import load_image, export_to_video
# switch to "mps" for apple devices
pipe = DiffusionPipeline.from_pretrained("${model.id}", dtype=torch.bfloat16, device_map="cuda")
pipe.to("cuda")
prompt = "${get_prompt_from_diffusers_model(model) ?? diffusersVideoDefaultPrompt}"
image = load_image(
"https://huggingface.co/datasets/huggingface/documentation-images/resolve/main/diffusers/guitar-man.png"
)
output = pipe(image=image, prompt=prompt).frames[0]
export_to_video(output, "output.mp4")`,
];
const diffusers_controlnet = (model: ModelData) => [
`from diffusers import ControlNetModel, StableDiffusionControlNetPipeline
controlnet = ControlNetModel.from_pretrained("${model.id}")
pipe = StableDiffusionControlNetPipeline.from_pretrained(
"${get_base_diffusers_model(model)}", controlnet=controlnet
)`,
];
const diffusers_lora = (model: ModelData) => [
`import torch
from diffusers import DiffusionPipeline
# switch to "mps" for apple devices
pipe = DiffusionPipeline.from_pretrained("${get_base_diffusers_model(model)}", dtype=torch.bfloat16, device_map="cuda")
pipe.load_lora_weights("${model.id}")
prompt = "${get_prompt_from_diffusers_model(model) ?? diffusersDefaultPrompt}"
image = pipe(prompt).images[0]`,
];
const diffusers_lora_image_to_image = (model: ModelData) => [
`import torch
from diffusers import DiffusionPipeline
from diffusers.utils import load_image
# switch to "mps" for apple devices
pipe = DiffusionPipeline.from_pretrained("${get_base_diffusers_model(model)}", dtype=torch.bfloat16, device_map="cuda")
pipe.load_lora_weights("${model.id}")
prompt = "${get_prompt_from_diffusers_model(model) ?? diffusersImg2ImgDefaultPrompt}"
input_image = load_image("https://huggingface.co/datasets/huggingface/documentation-images/resolve/main/diffusers/cat.png")
image = pipe(image=input_image, prompt=prompt).images[0]`,
];
const diffusers_lora_text_to_video = (model: ModelData) => [
`import torch
from diffusers import DiffusionPipeline
from diffusers.utils import export_to_video
# switch to "mps" for apple devices
pipe = DiffusionPipeline.from_pretrained("${get_base_diffusers_model(model)}", dtype=torch.bfloat16, device_map="cuda")
pipe.load_lora_weights("${model.id}")
prompt = "${get_prompt_from_diffusers_model(model) ?? diffusersVideoDefaultPrompt}"
output = pipe(prompt=prompt).frames[0]
export_to_video(output, "output.mp4")`,
];
const diffusers_lora_image_to_video = (model: ModelData) => [
`import torch
from diffusers import DiffusionPipeline
from diffusers.utils import load_image, export_to_video
# switch to "mps" for apple devices
pipe = DiffusionPipeline.from_pretrained("${get_base_diffusers_model(model)}", dtype=torch.bfloat16, device_map="cuda")
pipe.load_lora_weights("${model.id}")
prompt = "${get_prompt_from_diffusers_model(model) ?? diffusersVideoDefaultPrompt}"
input_image = load_image("https://huggingface.co/datasets/huggingface/documentation-images/resolve/main/diffusers/guitar-man.png")
image = pipe(image=input_image, prompt=prompt).frames[0]
export_to_video(output, "output.mp4")`,
];
const diffusers_textual_inversion = (model: ModelData) => [
`import torch
from diffusers import DiffusionPipeline
# switch to "mps" for apple devices
pipe = DiffusionPipeline.from_pretrained("${get_base_diffusers_model(model)}", dtype=torch.bfloat16, device_map="cuda")
pipe.load_textual_inversion("${model.id}")`,
];
const diffusers_flux_fill = (model: ModelData) => [
`import torch
from diffusers import FluxFillPipeline
from diffusers.utils import load_image
image = load_image("https://huggingface.co/datasets/diffusers/diffusers-images-docs/resolve/main/cup.png")
mask = load_image("https://huggingface.co/datasets/diffusers/diffusers-images-docs/resolve/main/cup_mask.png")
# switch to "mps" for apple devices
pipe = FluxFillPipeline.from_pretrained("${model.id}", dtype=torch.bfloat16, device_map="cuda")
image = pipe(
prompt="a white paper cup",
image=image,
mask_image=mask,
height=1632,
width=1232,
guidance_scale=30,
num_inference_steps=50,
max_sequence_length=512,
generator=torch.Generator("cpu").manual_seed(0)
).images[0]
image.save(f"flux-fill-dev.png")`,
];
const diffusers_inpainting = (model: ModelData) => [
`import torch
from diffusers import AutoPipelineForInpainting
from diffusers.utils import load_image
# switch to "mps" for apple devices
pipe = AutoPipelineForInpainting.from_pretrained("${model.id}", dtype=torch.float16, variant="fp16", device_map="cuda")
img_url = "https://raw.githubusercontent.com/CompVis/latent-diffusion/main/data/inpainting_examples/overture-creations-5sI6fQgYIuo.png"
mask_url = "https://raw.githubusercontent.com/CompVis/latent-diffusion/main/data/inpainting_examples/overture-creations-5sI6fQgYIuo_mask.png"
image = load_image(img_url).resize((1024, 1024))
mask_image = load_image(mask_url).resize((1024, 1024))
prompt = "a tiger sitting on a park bench"
generator = torch.Generator(device="cuda").manual_seed(0)
image = pipe(
prompt=prompt,
image=image,
mask_image=mask_image,
guidance_scale=8.0,
num_inference_steps=20, # steps between 15 and 30 work well for us
strength=0.99, # make sure to use \`strength\` below 1.0
generator=generator,
).images[0]`,
];
export const diffusers = (model: ModelData): string[] => {
let codeSnippets: string[];
if (
model.tags.includes("StableDiffusionInpaintPipeline") ||
model.tags.includes("StableDiffusionXLInpaintPipeline")
) {
codeSnippets = diffusers_inpainting(model);
} else if (model.tags.includes("controlnet")) {
codeSnippets = diffusers_controlnet(model);
} else if (model.tags.includes("lora")) {
if (model.pipeline_tag === "image-to-image") {
codeSnippets = diffusers_lora_image_to_image(model);
} else if (model.pipeline_tag === "image-to-video") {
codeSnippets = diffusers_lora_image_to_video(model);
} else if (model.pipeline_tag === "text-to-video") {
codeSnippets = diffusers_lora_text_to_video(model);
} else {
codeSnippets = diffusers_lora(model);
}
} else if (model.tags.includes("textual_inversion")) {
codeSnippets = diffusers_textual_inversion(model);
} else if (model.tags.includes("FluxFillPipeline")) {
codeSnippets = diffusers_flux_fill(model);
} else if (model.pipeline_tag === "image-to-video") {
codeSnippets = diffusers_image_to_video(model);
} else if (model.pipeline_tag === "image-to-image") {
codeSnippets = diffusers_image_to_image(model);
} else {
codeSnippets = diffusers_default(model);
}
return [diffusers_install, ...codeSnippets];
};
export const diffusionkit = (model: ModelData): string[] => {
const sd3Snippet = `# Pipeline for Stable Diffusion 3
from diffusionkit.mlx import DiffusionPipeline
pipeline = DiffusionPipeline(
shift=3.0,
use_t5=False,
model_version=${model.id},
low_memory_mode=True,
a16=True,
w16=True,
)`;
const fluxSnippet = `# Pipeline for Flux
from diffusionkit.mlx import FluxPipeline
pipeline = FluxPipeline(
shift=1.0,
model_version=${model.id},
low_memory_mode=True,
a16=True,
w16=True,
)`;
const generateSnippet = `# Image Generation
HEIGHT = 512
WIDTH = 512
NUM_STEPS = ${model.tags.includes("flux") ? 4 : 50}
CFG_WEIGHT = ${model.tags.includes("flux") ? 0 : 5}
image, _ = pipeline.generate_image(
"a photo of a cat",
cfg_weight=CFG_WEIGHT,
num_steps=NUM_STEPS,
latent_size=(HEIGHT // 8, WIDTH // 8),
)`;
const pipelineSnippet = model.tags.includes("flux") ? fluxSnippet : sd3Snippet;
return [pipelineSnippet, generateSnippet];
};
export const cartesia_pytorch = (model: ModelData): string[] => [
`# pip install --no-binary :all: cartesia-pytorch
from cartesia_pytorch import ReneLMHeadModel
from transformers import AutoTokenizer
model = ReneLMHeadModel.from_pretrained("${model.id}")
tokenizer = AutoTokenizer.from_pretrained("allenai/OLMo-1B-hf")
in_message = ["Rene Descartes was"]
inputs = tokenizer(in_message, return_tensors="pt")
outputs = model.generate(inputs.input_ids, max_length=50, top_k=100, top_p=0.99)
out_message = tokenizer.batch_decode(outputs, skip_special_tokens=True)[0]
print(out_message)
)`,
];
export const cartesia_mlx = (model: ModelData): string[] => [
`import mlx.core as mx
import cartesia_mlx as cmx
model = cmx.from_pretrained("${model.id}")
model.set_dtype(mx.float32)
prompt = "Rene Descartes was"
for text in model.generate(
prompt,
max_tokens=500,
eval_every_n=5,
verbose=True,
top_p=0.99,
temperature=0.85,
):
print(text, end="", flush=True)
`,
];
export const edsnlp = (model: ModelData): string[] => {
const packageName = nameWithoutNamespace(model.id).replaceAll("-", "_");
return [
`# Load it from the Hub directly
import edsnlp
nlp = edsnlp.load("${model.id}")
`,
`# Or install it as a package
!pip install git+https://huggingface.co/${model.id}
# and import it as a module
import ${packageName}
nlp = ${packageName}.load() # or edsnlp.load("${packageName}")
`,
];
};
export const espnetTTS = (model: ModelData): string[] => [
`from espnet2.bin.tts_inference import Text2Speech
model = Text2Speech.from_pretrained("${model.id}")
speech, *_ = model("text to generate speech from")`,
];
export const espnetASR = (model: ModelData): string[] => [
`from espnet2.bin.asr_inference import Speech2Text
model = Speech2Text.from_pretrained(
"${model.id}"
)
speech, rate = soundfile.read("speech.wav")
text, *_ = model(speech)[0]`,
];
const espnetUnknown = () => [`unknown model type (must be text-to-speech or automatic-speech-recognition)`];
export const espnet = (model: ModelData): string[] => {
if (model.tags.includes("text-to-speech")) {
return espnetTTS(model);
} else if (model.tags.includes("automatic-speech-recognition")) {
return espnetASR(model);
}
return espnetUnknown();
};
export const fairseq = (model: ModelData): string[] => [
`from fairseq.checkpoint_utils import load_model_ensemble_and_task_from_hf_hub
models, cfg, task = load_model_ensemble_and_task_from_hf_hub(
"${model.id}"
)`,
];
export const flair = (model: ModelData): string[] => [
`from flair.models import SequenceTagger
tagger = SequenceTagger.load("${model.id}")`,
];
export const gliner = (model: ModelData): string[] => [
`from gliner import GLiNER
model = GLiNER.from_pretrained("${model.id}")`,
];
export const gliner2 = (model: ModelData): string[] => [
`from gliner2 import GLiNER2
model = GLiNER2.from_pretrained("${model.id}")
# Extract entities
text = "Apple CEO Tim Cook announced iPhone 15 in Cupertino yesterday."
result = extractor.extract_entities(text, ["company", "person", "product", "location"])
print(result)`,
];
export const indextts = (model: ModelData): string[] => [
`# Download model
from huggingface_hub import snapshot_download
snapshot_download(${model.id}, local_dir="checkpoints")
from indextts.infer import IndexTTS
# Ensure config.yaml is present in the checkpoints directory
tts = IndexTTS(model_dir="checkpoints", cfg_path="checkpoints/config.yaml")
voice = "path/to/your/reference_voice.wav" # Path to the voice reference audio file
text = "Hello, how are you?"
output_path = "output_index.wav"
tts.infer(voice, text, output_path)`,
];
export const htrflow = (model: ModelData): string[] => [
`# CLI usage
# see docs: https://ai-riksarkivet.github.io/htrflow/latest/getting_started/quick_start.html
htrflow pipeline <path/to/pipeline.yaml> <path/to/image>`,
`# Python usage
from htrflow.pipeline.pipeline import Pipeline
from htrflow.pipeline.steps import Task
from htrflow.models.framework.model import ModelClass
pipeline = Pipeline(
[
Task(
ModelClass, {"model": "${model.id}"}, {}
),
])`,
];
export const keras = (model: ModelData): string[] => [
`# Available backend options are: "jax", "torch", "tensorflow".
import os
os.environ["KERAS_BACKEND"] = "jax"
import keras
model = keras.saving.load_model("hf://${model.id}")
`,
];
const _keras_hub_causal_lm = (modelId: string): string => `
import keras_hub
# Load CausalLM model (optional: use half precision for inference)
causal_lm = keras_hub.models.CausalLM.from_preset("hf://${modelId}", dtype="bfloat16")
causal_lm.compile(sampler="greedy") # (optional) specify a sampler
# Generate text
causal_lm.generate("Keras: deep learning for", max_length=64)
`;
const _keras_hub_text_to_image = (modelId: string): string => `
import keras_hub
# Load TextToImage model (optional: use half precision for inference)
text_to_image = keras_hub.models.TextToImage.from_preset("hf://${modelId}", dtype="bfloat16")
# Generate images with a TextToImage model.
text_to_image.generate("Astronaut in a jungle")
`;
const _keras_hub_text_classifier = (modelId: string): string => `
import keras_hub
# Load TextClassifier model
text_classifier = keras_hub.models.TextClassifier.from_preset(
"hf://${modelId}",
num_classes=2,
)
# Fine-tune
text_classifier.fit(x=["Thilling adventure!", "Total snoozefest."], y=[1, 0])
# Classify text
text_classifier.predict(["Not my cup of tea."])
`;
const _keras_hub_image_classifier = (modelId: string): string => `
import keras_hub
import keras
# Load ImageClassifier model
image_classifier = keras_hub.models.ImageClassifier.from_preset(
"hf://${modelId}",
num_classes=2,
)
# Fine-tune
image_classifier.fit(
x=keras.random.randint((32, 64, 64, 3), 0, 256),
y=keras.random.randint((32, 1), 0, 2),
)
# Classify image
image_classifier.predict(keras.random.randint((1, 64, 64, 3), 0, 256))
`;
const _keras_hub_tasks_with_example = {
CausalLM: _keras_hub_causal_lm,
TextToImage: _keras_hub_text_to_image,
TextClassifier: _keras_hub_text_classifier,
ImageClassifier: _keras_hub_image_classifier,
};
const _keras_hub_task_without_example = (task: string, modelId: string): string => `
import keras_hub
# Create a ${task} model
task = keras_hub.models.${task}.from_preset("hf://${modelId}")
`;
const _keras_hub_generic_backbone = (modelId: string): string => `
import keras_hub
# Create a Backbone model unspecialized for any task
backbone = keras_hub.models.Backbone.from_preset("hf://${modelId}")
`;
export const keras_hub = (model: ModelData): string[] => {
const modelId = model.id;
const tasks = model.config?.keras_hub?.tasks ?? [];
const snippets: string[] = [];
// First, generate tasks with examples
for (const [task, snippet] of Object.entries(_keras_hub_tasks_with_example)) {
if (tasks.includes(task)) {
snippets.push(snippet(modelId));
}
}
// Then, add remaining tasks
for (const task of tasks) {
if (!Object.keys(_keras_hub_tasks_with_example).includes(task)) {
snippets.push(_keras_hub_task_without_example(task, modelId));
}
}
// Finally, add generic backbone snippet
snippets.push(_keras_hub_generic_backbone(modelId));
return snippets;
};
export const kernels = (model: ModelData): string[] => [
`# !pip install kernels
from kernels import get_kernel
kernel = get_kernel("${model.id}")`,
];
export const kimi_audio = (model: ModelData): string[] => [
`# Example usage for KimiAudio
# pip install git+https://github.com/MoonshotAI/Kimi-Audio.git
from kimia_infer.api.kimia import KimiAudio
model = KimiAudio(model_path="${model.id}", load_detokenizer=True)
sampling_params = {
"audio_temperature": 0.8,
"audio_top_k": 10,
"text_temperature": 0.0,
"text_top_k": 5,
}
# For ASR
asr_audio = "asr_example.wav"
messages_asr = [
{"role": "user", "message_type": "text", "content": "Please transcribe the following audio:"},
{"role": "user", "message_type": "audio", "content": asr_audio}
]
_, text = model.generate(messages_asr, **sampling_params, output_type="text")
print(text)
# For Q&A
qa_audio = "qa_example.wav"
messages_conv = [{"role": "user", "message_type": "audio", "content": qa_audio}]
wav, text = model.generate(messages_conv, **sampling_params, output_type="both")
sf.write("output_audio.wav", wav.cpu().view(-1).numpy(), 24000)
print(text)
`,
];
export const kittentts = (model: ModelData): string[] => [
`from kittentts import KittenTTS
m = KittenTTS("${model.id}")
audio = m.generate("This high quality TTS model works without a GPU")
# Save the audio
import soundfile as sf
sf.write('output.wav', audio, 24000)`,
];
export const lightning_ir = (model: ModelData): string[] => {
if (model.tags.includes("bi-encoder")) {
return [
`#install from https://github.com/webis-de/lightning-ir
from lightning_ir import BiEncoderModule
model = BiEncoderModule("${model.id}")
model.score("query", ["doc1", "doc2", "doc3"])`,
];
} else if (model.tags.includes("cross-encoder")) {
return [
`#install from https://github.com/webis-de/lightning-ir
from lightning_ir import CrossEncoderModule
model = CrossEncoderModule("${model.id}")
model.score("query", ["doc1", "doc2", "doc3"])`,
];
}
return [
`#install from https://github.com/webis-de/lightning-ir
from lightning_ir import BiEncoderModule, CrossEncoderModule
# depending on the model type, use either BiEncoderModule or CrossEncoderModule
model = BiEncoderModule("${model.id}")
# model = CrossEncoderModule("${model.id}")
model.score("query", ["doc1", "doc2", "doc3"])`,
];
};
export const llama_cpp_python = (model: ModelData): string[] => {
const snippets = [
`# !pip install llama-cpp-python
from llama_cpp import Llama
llm = Llama.from_pretrained(
repo_id="${model.id}",
filename="{{GGUF_FILE}}",
)
`,
];
if (model.tags.includes("conversational")) {
const messages = getModelInputSnippet(model) as ChatCompletionInputMessage[];
snippets.push(`llm.create_chat_completion(
messages = ${stringifyMessages(messages, { attributeKeyQuotes: true, indent: "\t" })}
)`);
} else {
snippets.push(`output = llm(
"Once upon a time,",
max_tokens=512,
echo=True
)
print(output)`);
}
return snippets;
};
export const lerobot = (model: ModelData): string[] => {
if (model.tags.includes("smolvla")) {
const smolvlaSnippets = [
// Installation snippet
`# See https://github.com/huggingface/lerobot?tab=readme-ov-file#installation for more details
git clone https://github.com/huggingface/lerobot.git
cd lerobot
pip install -e .[smolvla]`,
// Finetune snippet
`# Launch finetuning on your dataset
python lerobot/scripts/train.py \\
--policy.path=${model.id} \\
--dataset.repo_id=lerobot/svla_so101_pickplace \\
--batch_size=64 \\
--steps=20000 \\
--output_dir=outputs/train/my_smolvla \\
--job_name=my_smolvla_training \\
--policy.device=cuda \\
--wandb.enable=true`,
];
if (model.id !== "lerobot/smolvla_base") {
// Inference snippet (only if not base model)
smolvlaSnippets.push(
`# Run the policy using the record function
python -m lerobot.record \\
--robot.type=so101_follower \\
--robot.port=/dev/ttyACM0 \\ # <- Use your port
--robot.id=my_blue_follower_arm \\ # <- Use your robot id
--robot.cameras="{ front: {type: opencv, index_or_path: 8, width: 640, height: 480, fps: 30}}" \\ # <- Use your cameras
--dataset.single_task="Grasp a lego block and put it in the bin." \\ # <- Use the same task description you used in your dataset recording
--dataset.repo_id=HF_USER/dataset_name \\ # <- This will be the dataset name on HF Hub
--dataset.episode_time_s=50 \\
--dataset.num_episodes=10 \\
--policy.path=${model.id}`
);
}
return smolvlaSnippets;
}
return [];
};
export const tf_keras = (model: ModelData): string[] => [
`# Note: 'keras<3.x' or 'tf_keras' must be installed (legacy)
# See https://github.com/keras-team/tf-keras for more details.
from huggingface_hub import from_pretrained_keras
model = from_pretrained_keras("${model.id}")
`,
];
export const mamba_ssm = (model: ModelData): string[] => [
`from mamba_ssm import MambaLMHeadModel
model = MambaLMHeadModel.from_pretrained("${model.id}")`,
];
export const mars5_tts = (model: ModelData): string[] => [
`# Install from https://github.com/Camb-ai/MARS5-TTS
from inference import Mars5TTS
mars5 = Mars5TTS.from_pretrained("${model.id}")`,
];
export const matanyone = (model: ModelData): string[] => [
`# Install from https://github.com/pq-yang/MatAnyone.git
from matanyone.model.matanyone import MatAnyone
model = MatAnyone.from_pretrained("${model.id}")`,
`
from matanyone import InferenceCore
processor = InferenceCore("${model.id}")`,
];
export const mesh_anything = (): string[] => [
`# Install from https://github.com/buaacyw/MeshAnything.git
from MeshAnything.models.meshanything import MeshAnything
# refer to https://github.com/buaacyw/MeshAnything/blob/main/main.py#L91 on how to define args
# and https://github.com/buaacyw/MeshAnything/blob/main/app.py regarding usage
model = MeshAnything(args)`,
];
export const open_clip = (model: ModelData): string[] => [
`import open_clip
model, preprocess_train, preprocess_val = open_clip.create_model_and_transforms('hf-hub:${model.id}')
tokenizer = open_clip.get_tokenizer('hf-hub:${model.id}')`,
];
export const paddlenlp = (model: ModelData): string[] => {
if (model.config?.architectures?.[0]) {
const architecture = model.config.architectures[0];
return [
[
`from paddlenlp.transformers import AutoTokenizer, ${architecture}`,
"",
`tokenizer = AutoTokenizer.from_pretrained("${model.id}", from_hf_hub=True)`,
`model = ${architecture}.from_pretrained("${model.id}", from_hf_hub=True)`,
].join("\n"),
];
} else {
return [
[
`# ⚠️ Type of model unknown`,
`from paddlenlp.transformers import AutoTokenizer, AutoModel`,
"",
`tokenizer = AutoTokenizer.from_pretrained("${model.id}", from_hf_hub=True)`,
`model = AutoModel.from_pretrained("${model.id}", from_hf_hub=True)`,
].join("\n"),
];
}
};
export const paddleocr = (model: ModelData): string[] => {
const mapping: Record<string, { className: string }> = {
textline_detection: { className: "TextDetection" },
textline_recognition: { className: "TextRecognition" },
seal_text_detection: { className: "SealTextDetection" },
doc_img_unwarping: { className: "TextImageUnwarping" },
doc_img_orientation_classification: { className: "DocImgOrientationClassification" },
textline_orientation_classification: { className: "TextLineOrientationClassification" },
chart_parsing: { className: "ChartParsing" },
formula_recognition: { className: "FormulaRecognition" },
layout_detection: { className: "LayoutDetection" },
table_cells_detection: { className: "TableCellsDetection" },
wired_table_classification: { className: "TableClassification" },
table_structure_recognition: { className: "TableStructureRecognition" },
};
if (model.tags.includes("doc_vlm")) {
return [
`# 1. See https://www.paddlepaddle.org.cn/en/install to install paddlepaddle
# 2. pip install paddleocr
from paddleocr import DocVLM
model = DocVLM(model_name="${nameWithoutNamespace(model.id)}")
output = model.predict(
input={"image": "path/to/image.png", "query": "Parsing this image and output the content in Markdown format."},
batch_size=1
)
for res in output:
res.print()
res.save_to_json(save_path="./output/res.json")`,
];
}
if (model.tags.includes("document-parse")) {
return [
`# See https://www.paddleocr.ai/latest/version3.x/pipeline_usage/PaddleOCR-VL.html to installation
from paddleocr import PaddleOCRVL
pipeline = PaddleOCRVL()
output = pipeline.predict("path/to/document_image.png")
for res in output:
res.print()
res.save_to_json(save_path="output")
res.save_to_markdown(save_path="output")`,
];
}
for (const tag of model.tags) {
if (tag in mapping) {
const { className } = mapping[tag];
return [
`# 1. See https://www.paddlepaddle.org.cn/en/install to install paddlepaddle
# 2. pip install paddleocr
from paddleocr import ${className}
model = ${className}(model_name="${nameWithoutNamespace(model.id)}")
output = model.predict(input="path/to/image.png", batch_size=1)
for res in output:
res.print()
res.save_to_img(save_path="./output/")
res.save_to_json(save_path="./output/res.json")`,
];
}
}
return [
`# Please refer to the document for information on how to use the model.
# https://paddlepaddle.github.io/PaddleOCR/latest/en/version3.x/module_usage/module_overview.html`,
];
};
export const perception_encoder = (model: ModelData): string[] => {
const clip_model = `# Use PE-Core models as CLIP models
import core.vision_encoder.pe as pe
model = pe.CLIP.from_config("${model.id}", pretrained=True)`;
const vision_encoder = `# Use any PE model as a vision encoder
import core.vision_encoder.pe as pe
model = pe.VisionTransformer.from_config("${model.id}", pretrained=True)`;
if (model.id.includes("Core")) {
return [clip_model, vision_encoder];
} else {
return [vision_encoder];
}
};
export const phantom_wan = (model: ModelData): string[] => [
`from huggingface_hub import snapshot_download
from phantom_wan import WANI2V, configs
checkpoint_dir = snapshot_download("${model.id}")
wan_i2v = WanI2V(
config=configs.WAN_CONFIGS['i2v-14B'],
checkpoint_dir=checkpoint_dir,
)
video = wan_i2v.generate(text_prompt, image_prompt)`,
];
export const pyannote_audio_pipeline = (model: ModelData): string[] => [
`from pyannote.audio import Pipeline
pipeline = Pipeline.from_pretrained("${model.id}")
# inference on the whole file
pipeline("file.wav")
# inference on an excerpt
from pyannote.core import Segment
excerpt = Segment(start=2.0, end=5.0)
from pyannote.audio import Audio
waveform, sample_rate = Audio().crop("file.wav", excerpt)
pipeline({"waveform": waveform, "sample_rate": sample_rate})`,
];
const pyannote_audio_model = (model: ModelData): string[] => [
`from pyannote.audio import Model, Inference
model = Model.from_pretrained("${model.id}")
inference = Inference(model)
# inference on the whole file
inference("file.wav")
# inference on an excerpt
from pyannote.core import Segment
excerpt = Segment(start=2.0, end=5.0)
inference.crop("file.wav", excerpt)`,
];
export const pyannote_audio = (model: ModelData): string[] => {
if (model.tags.includes("pyannote-audio-pipeline")) {
return pyannote_audio_pipeline(model);
}
return pyannote_audio_model(model);
};
export const relik = (model: ModelData): string[] => [
`from relik import Relik
relik = Relik.from_pretrained("${model.id}")`,
];
export const renderformer = (model: ModelData): string[] => [
`# Install from https://github.com/microsoft/renderformer
from renderformer import RenderFormerRenderingPipeline
pipeline = RenderFormerRenderingPipeline.from_pretrained("${model.id}")`,
];
const tensorflowttsTextToMel = (model: ModelData): string[] => [
`from tensorflow_tts.inference import AutoProcessor, TFAutoModel
processor = AutoProcessor.from_pretrained("${model.id}")
model = TFAutoModel.from_pretrained("${model.id}")
`,
];
const tensorflowttsMelToWav = (model: ModelData): string[] => [
`from tensorflow_tts.inference import TFAutoModel
model = TFAutoModel.from_pretrained("${model.id}")
audios = model.inference(mels)
`,
];
const tensorflowttsUnknown = (model: ModelData): string[] => [
`from tensorflow_tts.inference import TFAutoModel
model = TFAutoModel.from_pretrained("${model.id}")
`,
];
export const tensorflowtts = (model: ModelData): string[] => {
if (model.tags.includes("text-to-mel")) {
return tensorflowttsTextToMel(model);
} else if (model.tags.includes("mel-to-wav")) {
return tensorflowttsMelToWav(model);
}
return tensorflowttsUnknown(model);
};
export const timm = (model: ModelData): string[] => [
`import timm
model = timm.create_model("hf_hub:${model.id}", pretrained=True)`,
];
export const saelens = (/* model: ModelData */): string[] => [
`# pip install sae-lens
from sae_lens import SAE
sae, cfg_dict, sparsity = SAE.from_pretrained(
release = "RELEASE_ID", # e.g., "gpt2-small-res-jb". See other options in https://github.com/jbloomAus/SAELens/blob/main/sae_lens/pretrained_saes.yaml
sae_id = "SAE_ID", # e.g., "blocks.8.hook_resid_pre". Won't always be a hook point
)`,
];
export const seed_story = (): string[] => [
`# seed_story_cfg_path refers to 'https://github.com/TencentARC/SEED-Story/blob/master/configs/clm_models/agent_7b_sft.yaml'
# llm_cfg_path refers to 'https://github.com/TencentARC/SEED-Story/blob/master/configs/clm_models/llama2chat7b_lora.yaml'
from omegaconf import OmegaConf
import hydra
# load Llama2
llm_cfg = OmegaConf.load(llm_cfg_path)
llm = hydra.utils.instantiate(llm_cfg, torch_dtype="fp16")
# initialize seed_story
seed_story_cfg = OmegaConf.load(seed_story_cfg_path)
seed_story = hydra.utils.instantiate(seed_story_cfg, llm=llm) `,
];
const skopsPickle = (model: ModelData, modelFile: string) => {
return [
`import joblib
from skops.hub_utils import download
download("${model.id}", "path_to_folder")
model = joblib.load(
"${modelFile}"
)
# only load pickle files from sources you trust
# read more about it here https://skops.readthedocs.io/en/stable/persistence.html`,
];
};
const skopsFormat = (model: ModelData, modelFile: string) => {
return [
`from skops.hub_utils import download
from skops.io import load
download("${model.id}", "path_to_folder")
# make sure model file is in skops format
# if model is a pickle file, make sure it's from a source you trust
model = load("path_to_folder/${modelFile}")`,
];
};
const skopsJobLib = (model: ModelData) => {
return [
`from huggingface_hub import hf_hub_download
import joblib
model = joblib.load(
hf_hub_download("${model.id}", "sklearn_model.joblib")
)
# only load pickle files from sources you trust
# read more about it here https://skops.readthedocs.io/en/stable/persistence.html`,
];
};
export const sklearn = (model: ModelData): string[] => {
if (model.tags.includes("skops")) {
const skopsmodelFile = model.config?.sklearn?.model?.file;
const skopssaveFormat = model.config?.sklearn?.model_format;
if (!skopsmodelFile) {
return [`# ⚠️ Model filename not specified in config.json`];
}
if (skopssaveFormat === "pickle") {
return skopsPickle(model, skopsmodelFile);
} else {
return skopsFormat(model, skopsmodelFile);
}
} else {
return skopsJobLib(model);
}
};
export const stable_audio_tools = (model: ModelData): string[] => [
`import torch
import torchaudio
from einops import rearrange
from stable_audio_tools import get_pretrained_model
from stable_audio_tools.inference.generation import generate_diffusion_cond
device = "cuda" if torch.cuda.is_available() else "cpu"
# Download model
model, model_config = get_pretrained_model("${model.id}")
sample_rate = model_config["sample_rate"]
sample_size = model_config["sample_size"]
model = model.to(device)
# Set up text and timing conditioning
conditioning = [{
"prompt": "128 BPM tech house drum loop",
}]
# Generate stereo audio
output = generate_diffusion_cond(
model,
conditioning=conditioning,
sample_size=sample_size,
device=device
)
# Rearrange audio batch to a single sequence
output = rearrange(output, "b d n -> d (b n)")
# Peak normalize, clip, convert to int16, and save to file
output = output.to(torch.float32).div(torch.max(torch.abs(output))).clamp(-1, 1).mul(32767).to(torch.int16).cpu()
torchaudio.save("output.wav", output, sample_rate)`,
];
export const fastai = (model: ModelData): string[] => [
`from huggingface_hub import from_pretrained_fastai
learn = from_pretrained_fastai("${model.id}")`,
];
export const sam2 = (model: ModelData): string[] => {
const image_predictor = `# Use SAM2 with images
import torch
from sam2.sam2_image_predictor import SAM2ImagePredictor
predictor = SAM2ImagePredictor.from_pretrained(${model.id})
with torch.inference_mode(), torch.autocast("cuda", dtype=torch.bfloat16):
predictor.set_image(<your_image>)
masks, _, _ = predictor.predict(<input_prompts>)`;
const video_predictor = `# Use SAM2 with videos
import torch
from sam2.sam2_video_predictor import SAM2VideoPredictor
predictor = SAM2VideoPredictor.from_pretrained(${model.id})
with torch.inference_mode(), torch.autocast("cuda", dtype=torch.bfloat16):
state = predictor.init_state(<your_video>)
# add new prompts and instantly get the output on the same frame
frame_idx, object_ids, masks = predictor.add_new_points(state, <your_prompts>):
# propagate the prompts to get masklets throughout the video
for frame_idx, object_ids, masks in predictor.propagate_in_video(state):
...`;
return [image_predictor, video_predictor];
};
export const sam_3d_objects = (model: ModelData): string[] => [
`from inference import Inference, load_image, load_single_mask
from huggingface_hub import hf_hub_download
path = hf_hub_download("${model.id}", "pipeline.yaml")
inference = Inference(path, compile=False)
image = load_image("path_to_image.png")
mask = load_single_mask("path_to_mask.png", index=14)
output = inference(image, mask)`,
];
export const sam_3d_body = (model: ModelData): string[] => [
`from notebook.utils import setup_sam_3d_body
estimator = setup_sam_3d_body(${model.id})
outputs = estimator.process_one_image(image)
rend_img = visualize_sample_together(image, outputs, estimator.faces)`,
];
export const sampleFactory = (model: ModelData): string[] => [
`python -m sample_factory.huggingface.load_from_hub -r ${model.id} -d ./train_dir`,
];
function get_widget_examples_from_st_model(model: ModelData): string[] | undefined {
const widgetExample = model.widgetData?.[0] as WidgetExampleSentenceSimilarityInput | undefined;
if (widgetExample?.source_sentence && widgetExample?.sentences?.length) {
return [widgetExample.source_sentence, ...widgetExample.sentences];
}
}
export const sentenceTransformers = (model: ModelData): string[] => {
const remote_code_snippet = model.tags.includes(TAG_CUSTOM_CODE) ? ", trust_remote_code=True" : "";
if (model.tags.includes("PyLate")) {
return [
`from pylate import models
queries = [
"Which planet is known as the Red Planet?",
"What is the largest planet in our solar system?",
]
documents = [
["Mars is the Red Planet.", "Venus is Earth's twin."],
["Jupiter is the largest planet.", "Saturn has rings."],
]
model = models.ColBERT(model_name_or_path="${model.id}")
queries_emb = model.encode(queries, is_query=True)
docs_emb = model.encode(documents, is_query=False)`,
];
}
if (model.tags.includes("cross-encoder") || model.pipeline_tag == "text-ranking") {
return [
`from sentence_transformers import CrossEncoder
model = CrossEncoder("${model.id}"${remote_code_snippet})
query = "Which planet is known as the Red Planet?"
passages = [
"Venus is often called Earth's twin because of its similar size and proximity.",
"Mars, known for its reddish appearance, is often referred to as the Red Planet.",
"Jupiter, the largest planet in our solar system, has a prominent red spot.",
"Saturn, famous for its rings, is sometimes mistaken for the Red Planet."
]
scores = model.predict([(query, passage) for passage in passages])
print(scores)`,
];
}
const exampleSentences = get_widget_examples_from_st_model(model) ?? [
"The weather is lovely today.",
"It's so sunny outside!",
"He drove to the stadium.",
];
return [
`from sentence_transformers import SentenceTransformer
model = SentenceTransformer("${model.id}"${remote_code_snippet})
sentences = ${JSON.stringify(exampleSentences, null, 4)}
embeddings = model.encode(sentences)
similarities = model.similarity(embeddings, embeddings)
print(similarities.shape)
# [${exampleSentences.length}, ${exampleSentences.length}]`,
];
};
export const setfit = (model: ModelData): string[] => [
`from setfit import SetFitModel
model = SetFitModel.from_pretrained("${model.id}")`,
];
export const spacy = (model: ModelData): string[] => [
`!pip install https://huggingface.co/${model.id}/resolve/main/${nameWithoutNamespace(model.id)}-any-py3-none-any.whl
# Using spacy.load().
import spacy
nlp = spacy.load("${nameWithoutNamespace(model.id)}")
# Importing as module.
import ${nameWithoutNamespace(model.id)}
nlp = ${nameWithoutNamespace(model.id)}.load()`,
];
export const span_marker = (model: ModelData): string[] => [
`from span_marker import SpanMarkerModel
model = SpanMarkerModel.from_pretrained("${model.id}")`,
];
export const stanza = (model: ModelData): string[] => [
`import stanza
stanza.download("${nameWithoutNamespace(model.id).replace("stanza-", "")}")
nlp = stanza.Pipeline("${nameWithoutNamespace(model.id).replace("stanza-", "")}")`,
];
const speechBrainMethod = (speechbrainInterface: string) => {
switch (speechbrainInterface) {
case "EncoderClassifier":
return "classify_file";
case "EncoderDecoderASR":
case "EncoderASR":
return "transcribe_file";
case "SpectralMaskEnhancement":
return "enhance_file";
case "SepformerSeparation":
return "separate_file";
default:
return undefined;
}
};
export const speechbrain = (model: ModelData): string[] => {
const speechbrainInterface = model.config?.speechbrain?.speec