UNPKG

@huggingface/tasks

Version:
51 lines (50 loc) 1.8 kB
"use strict"; Object.defineProperty(exports, "__esModule", { value: true }); const taskData = { datasets: [], demo: { inputs: [ { filename: "image-text-to-video-input.jpg", type: "img", }, { label: "Input", content: "Darth Vader is surfing on the waves.", type: "text", }, ], outputs: [ { filename: "image-text-to-video-output.gif", type: "img", }, ], }, metrics: [ { description: "Frechet Video Distance uses a model that captures coherence for changes in frames and the quality of each frame. A smaller score indicates better video generation.", id: "fvd", }, { description: "CLIPSIM measures similarity between video frames and text using an image-text similarity model. A higher score indicates better video generation.", id: "clipsim", }, ], models: [ { description: "A powerful model for image-text-to-video generation.", id: "Lightricks/LTX-Video", }, ], spaces: [ { description: "An application for image-text-to-video generation.", id: "Lightricks/ltx-video-distilled", }, ], summary: "Image-text-to-video models take an reference image and a text instructions as and generate a video based on them. These models are useful for animating still images, creating dynamic content from static references, and generating videos with specific motion or transformation guidance.", widgetModels: ["Lightricks/LTX-Video"], youtubeId: undefined, }; exports.default = taskData;