UNPKG

@huggingface/tasks

Version:
82 lines (79 loc) 1.61 kB
import type { TaskDataCustom } from "../index.js"; const taskData: TaskDataCustom = { datasets: [ { description: "A benchmark of 10 different audio tasks.", id: "s3prl/superb", }, { description: "A dataset of YouTube clips and their sound categories.", id: "agkphysics/AudioSet", }, ], demo: { inputs: [ { filename: "audio.wav", type: "audio", }, ], outputs: [ { data: [ { label: "Up", score: 0.2, }, { label: "Down", score: 0.8, }, ], type: "chart", }, ], }, metrics: [ { description: "", id: "accuracy", }, { description: "", id: "recall", }, { description: "", id: "precision", }, { description: "", id: "f1", }, ], models: [ { description: "An easy-to-use model for command recognition.", id: "speechbrain/google_speech_command_xvector", }, { description: "An emotion recognition model.", id: "ehcalabres/wav2vec2-lg-xlsr-en-speech-emotion-recognition", }, { description: "A language identification model.", id: "facebook/mms-lid-126", }, ], spaces: [ { description: "An application that can classify music into different genre.", id: "kurianbenoy/audioclassification", }, ], summary: "Audio classification is the task of assigning a label or class to a given audio. It can be used for recognizing which command a user is giving or the emotion of a statement, as well as identifying a speaker.", widgetModels: ["MIT/ast-finetuned-audioset-10-10-0.4593"], youtubeId: "KWwzcmG98Ds", }; export default taskData;