UNPKG

@huggingface/tasks

Version:
61 lines (60 loc) 1.85 kB
"use strict"; Object.defineProperty(exports, "__esModule", { value: true }); const taskData = { datasets: [ { // TODO write proper description description: "Dataset from 12M image-text of Reddit", id: "red_caps", }, { // TODO write proper description description: "Dataset from 3.3M images of Google", id: "datasets/conceptual_captions", }, ], demo: { inputs: [ { filename: "savanna.jpg", type: "img", }, ], outputs: [ { label: "Detailed description", content: "a herd of giraffes and zebras grazing in a field", type: "text", }, ], }, metrics: [], models: [ { description: "Strong OCR model.", id: "allenai/olmOCR-7B-0725", }, { description: "Powerful image captioning model.", id: "fancyfeast/llama-joycaption-beta-one-hf-llava", }, ], spaces: [ { description: "SVG generator app from images.", id: "multimodalart/OmniSVG-3B", }, { description: "An application that converts documents to markdown.", id: "numind/NuMarkdown-8B-Thinking", }, { description: "An application that can caption images.", id: "fancyfeast/joy-caption-beta-one", }, ], summary: "Image to text models output a text from a given image. Image captioning or optical character recognition can be considered as the most common applications of image to text.", widgetModels: ["Salesforce/blip-image-captioning-large"], youtubeId: "", }; exports.default = taskData;