@huggingface/tasks
Version:
List of ML tasks for huggingface.co/tasks
61 lines (60 loc) • 1.85 kB
JavaScript
Object.defineProperty(exports, "__esModule", { value: true });
const taskData = {
datasets: [
{
// TODO write proper description
description: "Dataset from 12M image-text of Reddit",
id: "red_caps",
},
{
// TODO write proper description
description: "Dataset from 3.3M images of Google",
id: "datasets/conceptual_captions",
},
],
demo: {
inputs: [
{
filename: "savanna.jpg",
type: "img",
},
],
outputs: [
{
label: "Detailed description",
content: "a herd of giraffes and zebras grazing in a field",
type: "text",
},
],
},
metrics: [],
models: [
{
description: "Strong OCR model.",
id: "allenai/olmOCR-7B-0725",
},
{
description: "Powerful image captioning model.",
id: "fancyfeast/llama-joycaption-beta-one-hf-llava",
},
],
spaces: [
{
description: "SVG generator app from images.",
id: "multimodalart/OmniSVG-3B",
},
{
description: "An application that converts documents to markdown.",
id: "numind/NuMarkdown-8B-Thinking",
},
{
description: "An application that can caption images.",
id: "fancyfeast/joy-caption-beta-one",
},
],
summary: "Image to text models output a text from a given image. Image captioning or optical character recognition can be considered as the most common applications of image to text.",
widgetModels: ["Salesforce/blip-image-captioning-large"],
youtubeId: "",
};
exports.default = taskData;
;