UNPKG

@huggingface/tasks

Version:
72 lines (69 loc) 1.64 kB
import type { TaskDataCustom } from "../index.js"; const taskData: TaskDataCustom = { datasets: [ { description: "A large dataset used to train visual document retrieval models.", id: "vidore/colpali_train_set", }, ], demo: { inputs: [ { filename: "input.png", type: "img", }, { label: "Question", content: "Is the model in this paper the fastest for inference?", type: "text", }, ], outputs: [ { type: "chart", data: [ { label: "Page 10", score: 0.7, }, { label: "Page 11", score: 0.06, }, { label: "Page 9", score: 0.003, }, ], }, ], }, isPlaceholder: false, metrics: [ { description: "NDCG@k scores ranked recommendation lists for top-k results. 0 is the worst, 1 is the best.", id: "Normalized Discounted Cumulative Gain at K", }, ], models: [ { description: "Very accurate visual document retrieval model for multilingual queries and documents.", id: "vidore/colqwen2-v1.0", }, { description: "Very fast and efficient visual document retrieval model that works on five languages.", id: "marco/mcdse-2b-v1", }, ], spaces: [ { description: "A leaderboard of visual document retrieval models.", id: "vidore/vidore-leaderboard", }, ], summary: "Visual document retrieval is the task of searching for relevant image-based documents, such as PDFs. These models take a text query and multiple documents as input and return the top-most relevant documents and relevancy scores as output.", widgetModels: [""], youtubeId: "", }; export default taskData;