UNPKG

@huggingface/tasks

Version:
68 lines (67 loc) 2.08 kB
const taskData = { datasets: [ { description: "NYU Depth V2 Dataset: Video dataset containing both RGB and depth sensor data.", id: "sayakpaul/nyu_depth_v2", }, { description: "Monocular depth estimation benchmark based without noise and errors.", id: "depth-anything/DA-2K", }, ], demo: { inputs: [ { filename: "depth-estimation-input.jpg", type: "img", }, ], outputs: [ { filename: "depth-estimation-output.png", type: "img", }, ], }, metrics: [], models: [ { description: "Cutting-edge depth estimation model.", id: "depth-anything/Depth-Anything-V2-Large", }, { description: "A strong monocular depth estimation model.", id: "jingheya/lotus-depth-g-v1-0", }, { description: "A depth estimation model that predicts depth in videos.", id: "tencent/DepthCrafter", }, { description: "A robust depth estimation model.", id: "apple/DepthPro-hf", }, ], spaces: [ { description: "An application that predicts the depth of an image and then reconstruct the 3D model as voxels.", id: "radames/dpt-depth-estimation-3d-voxels", }, { description: "An application for bleeding-edge depth estimation.", id: "akhaliq/depth-pro", }, { description: "An application on cutting-edge depth estimation in videos.", id: "tencent/DepthCrafter", }, { description: "A human-centric depth estimation application.", id: "facebook/sapiens-depth", }, ], summary: "Depth estimation is the task of predicting depth of the objects present in an image.", widgetModels: [""], youtubeId: "", }; export default taskData;