UNPKG

@huggingface/inference

Version:

Typescript client for the Hugging Face Inference Providers and Inference Endpoints

40 lines (39 loc) 1.69 kB
"use strict"; Object.defineProperty(exports, "__esModule", { value: true }); exports.zeroShotImageClassification = zeroShotImageClassification; const getInferenceProviderMapping_js_1 = require("../../lib/getInferenceProviderMapping.js"); const getProviderHelper_js_1 = require("../../lib/getProviderHelper.js"); const base64FromBytes_js_1 = require("../../utils/base64FromBytes.js"); const request_js_1 = require("../../utils/request.js"); async function preparePayload(args) { if (args.inputs instanceof Blob) { return { ...args, inputs: { image: (0, base64FromBytes_js_1.base64FromBytes)(new Uint8Array(await args.inputs.arrayBuffer())), }, }; } else { return { ...args, inputs: { image: (0, base64FromBytes_js_1.base64FromBytes)(new Uint8Array(args.inputs.image instanceof ArrayBuffer ? args.inputs.image : await args.inputs.image.arrayBuffer())), }, }; } } /** * Classify an image to specified classes. * Recommended model: openai/clip-vit-large-patch14-336 */ async function zeroShotImageClassification(args, options) { const provider = await (0, getInferenceProviderMapping_js_1.resolveProvider)(args.provider, args.model, args.endpointUrl); const providerHelper = (0, getProviderHelper_js_1.getProviderHelper)(provider, "zero-shot-image-classification"); const payload = await preparePayload(args); const { data: res } = await (0, request_js_1.innerRequest)(payload, providerHelper, { ...options, task: "zero-shot-image-classification", }); return providerHelper.getResponse(res); }