@huggingface/inference
Version:
Typescript client for the Hugging Face Inference Providers and Inference Endpoints
37 lines (33 loc) • 1.33 kB
text/typescript
import { resolveProvider } from "../../lib/getInferenceProviderMapping";
import { getProviderHelper } from "../../lib/getProviderHelper";
import type { BaseArgs, Options } from "../../types";
import { innerRequest } from "../../utils/request";
export type TabularRegressionArgs = BaseArgs & {
inputs: {
/**
* A table of data represented as a dict of list where entries are headers and the lists are all the values, all lists must have the same size.
*/
data: Record<string, string[]>;
};
};
/**
* a list of predicted values for each row
*/
export type TabularRegressionOutput = number[];
/**
* Predicts target value for a given set of features in tabular form.
* Typically, you will want to train a regression model on your training data and use it with your new data of the same format.
* Example model: scikit-learn/Fish-Weight
*/
export async function tabularRegression(
args: TabularRegressionArgs,
options?: Options
): Promise<TabularRegressionOutput> {
const provider = await resolveProvider(args.provider, args.model, args.endpointUrl);
const providerHelper = getProviderHelper(provider, "tabular-regression");
const { data: res } = await innerRequest<TabularRegressionOutput>(args, providerHelper, {
...options,
task: "tabular-regression",
});
return providerHelper.getResponse(res);
}