UNPKG

@huggingface/inference

Version:

Typescript client for the Hugging Face Inference Providers and Inference Endpoints

34 lines (29 loc) 1.5 kB
import type { FeatureExtractionInput } from "@huggingface/tasks"; import { resolveProvider } from "../../lib/getInferenceProviderMapping"; import { getProviderHelper } from "../../lib/getProviderHelper"; import type { BaseArgs, Options } from "../../types"; import { innerRequest } from "../../utils/request"; interface FeatureExtractionOAICompatInput { encoding_format?: "float" | "base64"; dimensions?: number | null; } export type FeatureExtractionArgs = BaseArgs & FeatureExtractionInput & FeatureExtractionOAICompatInput; /** * Returned values are a multidimensional array of floats (dimension depending on if you sent a string or a list of string, and if the automatic reduction, usually mean_pooling for instance was applied for you or not. This should be explained on the model's README). */ export type FeatureExtractionOutput = (number | number[] | number[][])[]; /** * This task reads some text and outputs raw float values, that are usually consumed as part of a semantic database/semantic search. */ export async function featureExtraction( args: FeatureExtractionArgs, options?: Options ): Promise<FeatureExtractionOutput> { const provider = await resolveProvider(args.provider, args.model, args.endpointUrl); const providerHelper = getProviderHelper(provider, "feature-extraction"); const { data: res } = await innerRequest<FeatureExtractionOutput>(args, providerHelper, { ...options, task: "feature-extraction", }); return providerHelper.getResponse(res); }