UNPKG

@huggingface/inference

Version:

Typescript client for the Hugging Face Inference Providers and Inference Endpoints

661 lines (509 loc) • 20 kB
# šŸ¤— Hugging Face Inference A Typescript powered wrapper for Inference Providers (serverless) and Inference Endpoints (dedicated). It works with [Inference Providers (serverless)](https://huggingface.co/docs/api-inference/index) – including all supported third-party Inference Providers – and [Inference Endpoints (dedicated)](https://huggingface.co/docs/inference-endpoints/index), and even with . Check out the [full documentation](https://huggingface.co/docs/huggingface.js/inference/README). You can also try out a live [interactive notebook](https://observablehq.com/@huggingface/hello-huggingface-js-inference), see some demos on [hf.co/huggingfacejs](https://huggingface.co/huggingfacejs), or watch a [Scrimba tutorial that explains how Inference Endpoints works](https://scrimba.com/scrim/cod8248f5adfd6e129582c523). ## Getting Started ### Install #### Node ```console npm install @huggingface/inference pnpm add @huggingface/inference yarn add @huggingface/inference ``` #### Deno ```ts // esm.sh import { InferenceClient } from "https://esm.sh/@huggingface/inference"; // or npm: import { InferenceClient } from "npm:@huggingface/inference"; ``` ### Initialize ```typescript import { InferenceClient } from '@huggingface/inference'; const hf = new InferenceClient('your access token'); ``` ā—**Important note:** Always pass an access token. Join [Hugging Face](https://huggingface.co/join) and then visit [access tokens](https://huggingface.co/settings/tokens) to generate your access token for **free**. Your access token should be kept private. If you need to protect it in front-end applications, we suggest setting up a proxy server that stores the access token. ### All supported inference providers You can send inference requests to third-party providers with the inference client. Currently, we support the following providers: - [Fal.ai](https://fal.ai) - [Featherless AI](https://featherless.ai) - [Fireworks AI](https://fireworks.ai) - [Hyperbolic](https://hyperbolic.xyz) - [Nebius](https://studio.nebius.ai) - [Novita](https://novita.ai/?utm_source=github_huggingface&utm_medium=github_readme&utm_campaign=link) - [Nscale](https://nscale.com) - [OVHcloud](https://endpoints.ai.cloud.ovh.net/) - [Replicate](https://replicate.com) - [Sambanova](https://sambanova.ai) - [Together](https://together.xyz) - [Blackforestlabs](https://blackforestlabs.ai) - [Cohere](https://cohere.com) - [Cerebras](https://cerebras.ai/) - [Groq](https://groq.com) To send requests to a third-party provider, you have to pass the `provider` parameter to the inference function. Make sure your request is authenticated with an access token. ```ts const accessToken = "hf_..."; // Either a HF access token, or an API key from the third-party provider (Replicate in this example) const client = new InferenceClient(accessToken); await client.textToImage({ provider: "replicate", model:"black-forest-labs/Flux.1-dev", inputs: "A black forest cake" }) ``` When authenticated with a Hugging Face access token, the request is routed through https://huggingface.co. When authenticated with a third-party provider key, the request is made directly against that provider's inference API. Only a subset of models are supported when requesting third-party providers. You can check the list of supported models per pipeline tasks here: - [Fal.ai supported models](https://huggingface.co/api/partners/fal-ai/models) - [Featherless AI supported models](https://huggingface.co/api/partners/featherless-ai/models) - [Fireworks AI supported models](https://huggingface.co/api/partners/fireworks-ai/models) - [Hyperbolic supported models](https://huggingface.co/api/partners/hyperbolic/models) - [Nebius supported models](https://huggingface.co/api/partners/nebius/models) - [Nscale supported models](https://huggingface.co/api/partners/nscale/models) - [OVHcloud supported models](https://huggingface.co/api/partners/ovhcloud/models) - [Replicate supported models](https://huggingface.co/api/partners/replicate/models) - [Sambanova supported models](https://huggingface.co/api/partners/sambanova/models) - [Together supported models](https://huggingface.co/api/partners/together/models) - [Cohere supported models](https://huggingface.co/api/partners/cohere/models) - [Cerebras supported models](https://huggingface.co/api/partners/cerebras/models) - [Groq supported models](https://console.groq.com/docs/models) - [HF Inference API (serverless)](https://huggingface.co/models?inference=warm&sort=trending) ā—**Important note:** To be compatible, the third-party API must adhere to the "standard" shape API we expect on HF model pages for each pipeline task type. This is not an issue for LLMs as everyone converged on the OpenAI API anyways, but can be more tricky for other tasks like "text-to-image" or "automatic-speech-recognition" where there exists no standard API. Let us know if any help is needed or if we can make things easier for you! šŸ‘‹**Want to add another provider?** Get in touch if you'd like to add support for another Inference provider, and/or request it on https://huggingface.co/spaces/huggingface/HuggingDiscussions/discussions/49 ### Tree-shaking You can import the functions you need directly from the module instead of using the `InferenceClient` class. ```ts import { textGeneration } from "@huggingface/inference"; await textGeneration({ accessToken: "hf_...", model: "model_or_endpoint", inputs: ..., parameters: ... }) ``` This will enable tree-shaking by your bundler. ## Natural Language Processing ### Text Generation Generates text from an input prompt. [Demo](https://huggingface.co/spaces/huggingfacejs/streaming-text-generation) ```typescript await hf.textGeneration({ model: 'gpt2', inputs: 'The answer to the universe is' }) for await (const output of hf.textGenerationStream({ model: "google/flan-t5-xxl", inputs: 'repeat "one two three four"', parameters: { max_new_tokens: 250 } })) { console.log(output.token.text, output.generated_text); } ``` ### Text Generation (Chat Completion API Compatible) Using the `chatCompletion` method, you can generate text with models compatible with the OpenAI Chat Completion API. All models served by [TGI](https://huggingface.co/docs/text-generation-inference/) on Hugging Face support Messages API. [Demo](https://huggingface.co/spaces/huggingfacejs/streaming-chat-completion) ```typescript // Non-streaming API const out = await hf.chatCompletion({ model: "meta-llama/Llama-3.1-8B-Instruct", messages: [{ role: "user", content: "Hello, nice to meet you!" }], max_tokens: 512, temperature: 0.1, }); // Streaming API let out = ""; for await (const chunk of hf.chatCompletionStream({ model: "meta-llama/Llama-3.1-8B-Instruct", messages: [ { role: "user", content: "Can you help me solve an equation?" }, ], max_tokens: 512, temperature: 0.1, })) { if (chunk.choices && chunk.choices.length > 0) { out += chunk.choices[0].delta.content; } } ``` It's also possible to call Mistral or OpenAI endpoints directly: ```typescript const openai = new InferenceClient(OPENAI_TOKEN).endpoint("https://api.openai.com"); let out = ""; for await (const chunk of openai.chatCompletionStream({ model: "gpt-3.5-turbo", messages: [ { role: "user", content: "Complete the equation 1+1= ,just the answer" }, ], max_tokens: 500, temperature: 0.1, seed: 0, })) { if (chunk.choices && chunk.choices.length > 0) { out += chunk.choices[0].delta.content; } } // For mistral AI: // endpointUrl: "https://api.mistral.ai" // model: "mistral-tiny" ``` ### Fill Mask Tries to fill in a hole with a missing word (token to be precise). ```typescript await hf.fillMask({ model: 'bert-base-uncased', inputs: '[MASK] world!' }) ``` ### Summarization Summarizes longer text into shorter text. Be careful, some models have a maximum length of input. ```typescript await hf.summarization({ model: 'facebook/bart-large-cnn', inputs: 'The tower is 324 metres (1,063 ft) tall, about the same height as an 81-storey building, and the tallest structure in Paris. Its base is square, measuring 125 metres (410 ft) on each side. During its construction, the Eiffel Tower surpassed the Washington Monument to become the tallest man-made structure in the world, a title it held for 41 years until the Chrysler Building in New York City was finished in 1930.', parameters: { max_length: 100 } }) ``` ### Question Answering Answers questions based on the context you provide. ```typescript await hf.questionAnswering({ model: 'deepset/roberta-base-squad2', inputs: { question: 'What is the capital of France?', context: 'The capital of France is Paris.' } }) ``` ### Table Question Answering ```typescript await hf.tableQuestionAnswering({ model: 'google/tapas-base-finetuned-wtq', inputs: { query: 'How many stars does the transformers repository have?', table: { Repository: ['Transformers', 'Datasets', 'Tokenizers'], Stars: ['36542', '4512', '3934'], Contributors: ['651', '77', '34'], 'Programming language': ['Python', 'Python', 'Rust, Python and NodeJS'] } } }) ``` ### Text Classification Often used for sentiment analysis, this method will assign labels to the given text along with a probability score of that label. ```typescript await hf.textClassification({ model: 'distilbert-base-uncased-finetuned-sst-2-english', inputs: 'I like you. I love you.' }) ``` ### Token Classification Used for sentence parsing, either grammatical, or Named Entity Recognition (NER) to understand keywords contained within text. ```typescript await hf.tokenClassification({ model: 'dbmdz/bert-large-cased-finetuned-conll03-english', inputs: 'My name is Sarah Jessica Parker but you can call me Jessica' }) ``` ### Translation Converts text from one language to another. ```typescript await hf.translation({ model: 't5-base', inputs: 'My name is Wolfgang and I live in Berlin' }) await hf.translation({ model: 'facebook/mbart-large-50-many-to-many-mmt', inputs: textToTranslate, parameters: { "src_lang": "en_XX", "tgt_lang": "fr_XX" } }) ``` ### Zero-Shot Classification Checks how well an input text fits into a set of labels you provide. ```typescript await hf.zeroShotClassification({ model: 'facebook/bart-large-mnli', inputs: [ 'Hi, I recently bought a device from your company but it is not working as advertised and I would like to get reimbursed!' ], parameters: { candidate_labels: ['refund', 'legal', 'faq'] } }) ``` ### Conversational This task corresponds to any chatbot-like structure. Models tend to have shorter max_length, so please check with caution when using a given model if you need long-range dependency or not. ```typescript await hf.conversational({ model: 'microsoft/DialoGPT-large', inputs: { past_user_inputs: ['Which movie is the best ?'], generated_responses: ['It is Die Hard for sure.'], text: 'Can you explain why ?' } }) ``` ### Sentence Similarity Calculate the semantic similarity between one text and a list of other sentences. ```typescript await hf.sentenceSimilarity({ model: 'sentence-transformers/paraphrase-xlm-r-multilingual-v1', inputs: { source_sentence: 'That is a happy person', sentences: [ 'That is a happy dog', 'That is a very happy person', 'Today is a sunny day' ] } }) ``` ## Audio ### Automatic Speech Recognition Transcribes speech from an audio file. [Demo](https://huggingface.co/spaces/huggingfacejs/speech-recognition-vue) ```typescript await hf.automaticSpeechRecognition({ model: 'facebook/wav2vec2-large-960h-lv60-self', data: readFileSync('test/sample1.flac') }) ``` ### Audio Classification Assigns labels to the given audio along with a probability score of that label. [Demo](https://huggingface.co/spaces/huggingfacejs/audio-classification-vue) ```typescript await hf.audioClassification({ model: 'superb/hubert-large-superb-er', data: readFileSync('test/sample1.flac') }) ``` ### Text To Speech Generates natural-sounding speech from text input. [Interactive tutorial](https://scrimba.com/scrim/co8da4d23b49b648f77f4848a?pl=pkVnrP7uP) ```typescript await hf.textToSpeech({ model: 'espnet/kan-bayashi_ljspeech_vits', inputs: 'Hello world!' }) ``` ### Audio To Audio Outputs one or multiple generated audios from an input audio, commonly used for speech enhancement and source separation. ```typescript await hf.audioToAudio({ model: 'speechbrain/sepformer-wham', data: readFileSync('test/sample1.flac') }) ``` ## Computer Vision ### Image Classification Assigns labels to a given image along with a probability score of that label. [Demo](https://huggingface.co/spaces/huggingfacejs/image-classification-vue) ```typescript await hf.imageClassification({ data: readFileSync('test/cheetah.png'), model: 'google/vit-base-patch16-224' }) ``` ### Object Detection Detects objects within an image and returns labels with corresponding bounding boxes and probability scores. [Demo](https://huggingface.co/spaces/huggingfacejs/object-detection-vue) ```typescript await hf.objectDetection({ data: readFileSync('test/cats.png'), model: 'facebook/detr-resnet-50' }) ``` ### Image Segmentation Detects segments within an image and returns labels with corresponding bounding boxes and probability scores. ```typescript await hf.imageSegmentation({ data: readFileSync('test/cats.png'), model: 'facebook/detr-resnet-50-panoptic' }) ``` ### Image To Text Outputs text from a given image, commonly used for captioning or optical character recognition. ```typescript await hf.imageToText({ data: readFileSync('test/cats.png'), model: 'nlpconnect/vit-gpt2-image-captioning' }) ``` ### Text To Image Creates an image from a text prompt. [Demo](https://huggingface.co/spaces/huggingfacejs/image-to-text) ```typescript await hf.textToImage({ model: 'black-forest-labs/FLUX.1-dev', inputs: 'a picture of a green bird' }) ``` ### Image To Image Image-to-image is the task of transforming a source image to match the characteristics of a target image or a target image domain. [Interactive tutorial](https://scrimba.com/scrim/co4834bf9a91cc81cfab07969?pl=pkVnrP7uP) ```typescript await hf.imageToImage({ inputs: new Blob([readFileSync("test/stormtrooper_depth.png")]), parameters: { prompt: "elmo's lecture", }, model: "lllyasviel/sd-controlnet-depth", }); ``` ### Zero Shot Image Classification Checks how well an input image fits into a set of labels you provide. ```typescript await hf.zeroShotImageClassification({ model: 'openai/clip-vit-large-patch14-336', inputs: { image: await (await fetch('https://placekitten.com/300/300')).blob() }, parameters: { candidate_labels: ['cat', 'dog'] } }) ``` ## Multimodal ### Feature Extraction This task reads some text and outputs raw float values, that are usually consumed as part of a semantic database/semantic search. ```typescript await hf.featureExtraction({ model: "sentence-transformers/distilbert-base-nli-mean-tokens", inputs: "That is a happy person", }); ``` ### Visual Question Answering Visual Question Answering is the task of answering open-ended questions based on an image. They output natural language responses to natural language questions. [Demo](https://huggingface.co/spaces/huggingfacejs/doc-vis-qa) ```typescript await hf.visualQuestionAnswering({ model: 'dandelin/vilt-b32-finetuned-vqa', inputs: { question: 'How many cats are lying down?', image: await (await fetch('https://placekitten.com/300/300')).blob() } }) ``` ### Document Question Answering Document question answering models take a (document, question) pair as input and return an answer in natural language. [Demo](https://huggingface.co/spaces/huggingfacejs/doc-vis-qa) ```typescript await hf.documentQuestionAnswering({ model: 'impira/layoutlm-document-qa', inputs: { question: 'Invoice number?', image: await (await fetch('https://huggingface.co/spaces/impira/docquery/resolve/2359223c1837a7587402bda0f2643382a6eefeab/invoice.png')).blob(), } }) ``` ## Tabular ### Tabular Regression Tabular regression is the task of predicting a numerical value given a set of attributes. ```typescript await hf.tabularRegression({ model: "scikit-learn/Fish-Weight", inputs: { data: { "Height": ["11.52", "12.48", "12.3778"], "Length1": ["23.2", "24", "23.9"], "Length2": ["25.4", "26.3", "26.5"], "Length3": ["30", "31.2", "31.1"], "Species": ["Bream", "Bream", "Bream"], "Width": ["4.02", "4.3056", "4.6961"] }, }, }) ``` ### Tabular Classification Tabular classification is the task of classifying a target category (a group) based on set of attributes. ```typescript await hf.tabularClassification({ model: "vvmnnnkv/wine-quality", inputs: { data: { "fixed_acidity": ["7.4", "7.8", "10.3"], "volatile_acidity": ["0.7", "0.88", "0.32"], "citric_acid": ["0", "0", "0.45"], "residual_sugar": ["1.9", "2.6", "6.4"], "chlorides": ["0.076", "0.098", "0.073"], "free_sulfur_dioxide": ["11", "25", "5"], "total_sulfur_dioxide": ["34", "67", "13"], "density": ["0.9978", "0.9968", "0.9976"], "pH": ["3.51", "3.2", "3.23"], "sulphates": ["0.56", "0.68", "0.82"], "alcohol": ["9.4", "9.8", "12.6"] }, }, }) ``` You can use any Chat Completion API-compatible provider with the `chatCompletion` method. ```typescript // Chat Completion Example const MISTRAL_KEY = process.env.MISTRAL_KEY; const hf = new InferenceClient(MISTRAL_KEY); const ep = hf.endpoint("https://api.mistral.ai"); const stream = ep.chatCompletionStream({ model: "mistral-tiny", messages: [{ role: "user", content: "Complete the equation one + one = , just the answer" }], }); let out = ""; for await (const chunk of stream) { if (chunk.choices && chunk.choices.length > 0) { out += chunk.choices[0].delta.content; console.log(out); } } ``` ## Custom Inference Endpoints Learn more about using your own inference endpoints [here](https://hf.co/docs/inference-endpoints/) ```typescript const gpt2 = hf.endpoint('https://xyz.eu-west-1.aws.endpoints.huggingface.cloud/gpt2'); const { generated_text } = await gpt2.textGeneration({inputs: 'The answer to the universe is'}); // Chat Completion Example const ep = hf.endpoint( "https://router.huggingface.co/hf-inference/models/meta-llama/Llama-3.1-8B-Instruct" ); const stream = ep.chatCompletionStream({ model: "tgi", messages: [{ role: "user", content: "Complete the equation 1+1= ,just the answer" }], max_tokens: 500, temperature: 0.1, seed: 0, }); let out = ""; for await (const chunk of stream) { if (chunk.choices && chunk.choices.length > 0) { out += chunk.choices[0].delta.content; console.log(out); } } ``` By default, all calls to the inference endpoint will wait until the model is loaded. When [scaling to 0](https://huggingface.co/docs/inference-endpoints/en/autoscaling#scaling-to-0) is enabled on the endpoint, this can result in non-trivial waiting time. If you'd rather disable this behavior and handle the endpoint's returned 500 HTTP errors yourself, you can do so like so: ```typescript const gpt2 = hf.endpoint('https://xyz.eu-west-1.aws.endpoints.huggingface.cloud/gpt2'); const { generated_text } = await gpt2.textGeneration( {inputs: 'The answer to the universe is'}, {retry_on_error: false}, ); ``` ## Running tests ```console HF_TOKEN="your access token" pnpm run test ``` ## Finding appropriate models We have an informative documentation project called [Tasks](https://huggingface.co/tasks) to list available models for each task and explain how each task works in detail. It also contains demos, example outputs, and other resources should you want to dig deeper into the ML side of things. ## Dependencies - `@huggingface/tasks` : Typings only