UNPKG

@holgerengels/compute-engine

Version:

Symbolic computing and numeric evaluations for JavaScript and Node.js

1,635 lines (1,631 loc) 1.11 MB
/** Compute Engine 0.26.0-alpha2 */ (function(global,factory){typeof exports === 'object' && typeof module !== 'undefined' ? factory(exports) : typeof define === 'function' && define.amd ? define(['exports'],factory):(global = typeof globalThis !== 'undefined' ? globalThis : global || self, factory(global.ComputeEngine = {}));})(this, (function (exports) { 'use strict'; var ComputeEngine = (() => { var __defProp = Object.defineProperty; var __getOwnPropDesc = Object.getOwnPropertyDescriptor; var __getOwnPropNames = Object.getOwnPropertyNames; var __hasOwnProp = Object.prototype.hasOwnProperty; var __export = (target, all) => { for (var name in all) __defProp(target, name, { get: all[name], enumerable: true }); }; var __copyProps = (to, from, except, desc) => { if (from && typeof from === "object" || typeof from === "function") { for (let key of __getOwnPropNames(from)) if (!__hasOwnProp.call(to, key) && key !== except) __defProp(to, key, { get: () => from[key], enumerable: !(desc = __getOwnPropDesc(from, key)) || desc.enumerable }); } return to; }; var __toCommonJS = (mod2) => __copyProps(__defProp({}, "__esModule", { value: true }), mod2); // src/compute-engine.ts var compute_engine_exports = {}; __export(compute_engine_exports, { ComputeEngine: () => ComputeEngine, highlightCodeBlock: () => highlightCodeBlock, highlightCodeSpan: () => highlightCodeSpan, isBoxedRule: () => isBoxedRule, isRuleStep: () => isRuleStep, terminal: () => terminal, version: () => version }); // src/compute-engine/boxed-expression/public.ts function isRuleStep(x) { return x && typeof x === "object" && "because" in x && "value" in x; } function isBoxedRule(x) { return x && typeof x === "object" && x._tag === "boxed-rule"; } // node_modules/complex-esm/dist/src/complex.js var cosh = Math.cosh || function(x) { return Math.abs(x) < 1e-9 ? 1 - x : (Math.exp(x) + Math.exp(-x)) * 0.5; }; var sinh = Math.sinh || function(x) { return Math.abs(x) < 1e-9 ? x : (Math.exp(x) - Math.exp(-x)) * 0.5; }; var cosm1 = function(x) { var b = Math.PI / 4; if (-b > x || x > b) { return Math.cos(x) - 1; } var xx = x * x; return xx * (xx * (xx * (xx * (xx * (xx * (xx * (xx / 20922789888e3 - 1 / 87178291200) + 1 / 479001600) - 1 / 3628800) + 1 / 40320) - 1 / 720) + 1 / 24) - 1 / 2); }; var hypot = function(x, y) { var a = Math.abs(x); var b = Math.abs(y); if (a < 3e3 && b < 3e3) { return Math.sqrt(a * a + b * b); } if (a < b) { a = b; b = x / y; } else { b = y / x; } return a * Math.sqrt(1 + b * b); }; var parser_exit = function() { throw SyntaxError("Invalid Param"); }; function logHypot(a, b) { var _a = Math.abs(a); var _b = Math.abs(b); if (a === 0) { return Math.log(_b); } if (b === 0) { return Math.log(_a); } if (_a < 3e3 && _b < 3e3) { return Math.log(a * a + b * b) * 0.5; } a = a / 2; b = b / 2; return 0.5 * Math.log(a * a + b * b) + Math.LN2; } var parse = function(a, b) { var z = { "re": 0, "im": 0 }; if (a === void 0 || a === null) { z["re"] = z["im"] = 0; } else if (b !== void 0) { z["re"] = a; z["im"] = b; } else switch (typeof a) { case "object": if ("im" in a && "re" in a) { z["re"] = a["re"]; z["im"] = a["im"]; } else if ("abs" in a && "arg" in a) { if (!Number.isFinite(a["abs"]) && Number.isFinite(a["arg"])) { return Complex["INFINITY"]; } z["re"] = a["abs"] * Math.cos(a["arg"]); z["im"] = a["abs"] * Math.sin(a["arg"]); } else if ("r" in a && "phi" in a) { if (!Number.isFinite(a["r"]) && Number.isFinite(a["phi"])) { return Complex["INFINITY"]; } z["re"] = a["r"] * Math.cos(a["phi"]); z["im"] = a["r"] * Math.sin(a["phi"]); } else if (a.length === 2) { z["re"] = a[0]; z["im"] = a[1]; } else { parser_exit(); } break; case "string": z["im"] = /* void */ z["re"] = 0; var tokens = a.match(/\d+\.?\d*e[+-]?\d+|\d+\.?\d*|\.\d+|./g); var plus = 1; var minus = 0; if (tokens === null) { parser_exit(); } for (var i = 0; i < tokens.length; i++) { var c = tokens[i]; if (c === " " || c === " " || c === "\n") { } else if (c === "+") { plus++; } else if (c === "-") { minus++; } else if (c === "i" || c === "I") { if (plus + minus === 0) { parser_exit(); } if (tokens[i + 1] !== " " && !isNaN(Number(tokens[i + 1]))) { z["im"] += parseFloat((minus % 2 ? "-" : "") + tokens[i + 1]); i++; } else { z["im"] += parseFloat((minus % 2 ? "-" : "") + "1"); } plus = minus = 0; } else { if (plus + minus === 0 || isNaN(Number(c))) { parser_exit(); } if (tokens[i + 1] === "i" || tokens[i + 1] === "I") { z["im"] += parseFloat((minus % 2 ? "-" : "") + c); i++; } else { z["re"] += parseFloat((minus % 2 ? "-" : "") + c); } plus = minus = 0; } } if (plus + minus > 0) { parser_exit(); } break; case "number": z["im"] = 0; z["re"] = a; break; default: parser_exit(); } if (isNaN(z["re"]) || isNaN(z["im"])) { } return z; }; var Complex = class _Complex { constructor(a, b) { this.re = 0; this.im = 0; var z = parse(a, b); this["re"] = z["re"]; this["im"] = z["im"]; } /** * Calculates the sign of a complex number, which is a normalized complex * * @returns {Complex} */ sign() { var abs2 = this["abs"](); return new _Complex(this["re"] / abs2, this["im"] / abs2); } /** * Adds two complex numbers * * @returns {Complex} */ add(a, b) { var z = new _Complex(a, b); if (this["isInfinite"]() && z["isInfinite"]()) { return _Complex["NAN"]; } if (this["isInfinite"]() || z["isInfinite"]()) { return _Complex["INFINITY"]; } return new _Complex(this["re"] + z["re"], this["im"] + z["im"]); } /** * Subtracts two complex numbers * * @returns {Complex} */ sub(a, b) { var z = new _Complex(a, b); if (this["isInfinite"]() && z["isInfinite"]()) { return _Complex["NAN"]; } if (this["isInfinite"]() || z["isInfinite"]()) { return _Complex["INFINITY"]; } return new _Complex(this["re"] - z["re"], this["im"] - z["im"]); } /** * Multiplies two complex numbers * * @returns {Complex} */ mul(a, b) { var z = new _Complex(a, b); if (this["isInfinite"]() && z["isZero"]() || this["isZero"]() && z["isInfinite"]()) { return _Complex["NAN"]; } if (this["isInfinite"]() || z["isInfinite"]()) { return _Complex["INFINITY"]; } if (z["im"] === 0 && this["im"] === 0) { return new _Complex(this["re"] * z["re"], 0); } return new _Complex(this["re"] * z["re"] - this["im"] * z["im"], this["re"] * z["im"] + this["im"] * z["re"]); } /** * Divides two complex numbers * * @returns {Complex} */ div(a, b) { var z = new _Complex(a, b); if (this["isZero"]() && z["isZero"]() || this["isInfinite"]() && z["isInfinite"]()) { return _Complex["NAN"]; } if (this["isInfinite"]() || z["isZero"]()) { return _Complex["INFINITY"]; } if (this["isZero"]() || z["isInfinite"]()) { return _Complex["ZERO"]; } a = this["re"]; b = this["im"]; var c = z["re"]; var d = z["im"]; var t, x; if (0 === d) { return new _Complex(a / c, b / c); } if (Math.abs(c) < Math.abs(d)) { x = c / d; t = c * x + d; return new _Complex((a * x + b) / t, (b * x - a) / t); } else { x = d / c; t = d * x + c; return new _Complex((a + b * x) / t, (b - a * x) / t); } } /** * Calculate the power of two complex numbers * * @returns {Complex} */ pow(a, b) { var z = new _Complex(a, b); a = this["re"]; b = this["im"]; if (z["isZero"]()) { return _Complex["ONE"]; } if (z["im"] === 0) { if (b === 0 && a > 0) { return new _Complex(Math.pow(a, z["re"]), 0); } else if (a === 0) { switch ((z["re"] % 4 + 4) % 4) { case 0: return new _Complex(Math.pow(b, z["re"]), 0); case 1: return new _Complex(0, Math.pow(b, z["re"])); case 2: return new _Complex(-Math.pow(b, z["re"]), 0); case 3: return new _Complex(0, -Math.pow(b, z["re"])); } } } if (a === 0 && b === 0 && z["re"] > 0 && z["im"] >= 0) { return _Complex["ZERO"]; } var arg = Math.atan2(b, a); var loh = logHypot(a, b); a = Math.exp(z["re"] * loh - z["im"] * arg); b = z["im"] * loh + z["re"] * arg; return new _Complex(a * Math.cos(b), a * Math.sin(b)); } /** * Calculate the complex square root * * @returns {Complex} */ sqrt() { var a = this["re"]; var b = this["im"]; var r = this["abs"](); var re, im; if (a >= 0) { if (b === 0) { return new _Complex(Math.sqrt(a), 0); } re = 0.5 * Math.sqrt(2 * (r + a)); } else { re = Math.abs(b) / Math.sqrt(2 * (r - a)); } if (a <= 0) { im = 0.5 * Math.sqrt(2 * (r - a)); } else { im = Math.abs(b) / Math.sqrt(2 * (r + a)); } return new _Complex(re, b < 0 ? -im : im); } /** * Calculate the complex exponent * * @returns {Complex} */ exp() { var tmp = Math.exp(this["re"]); if (this["im"] === 0) { } return new _Complex(tmp * Math.cos(this["im"]), tmp * Math.sin(this["im"])); } /** * Calculate the complex exponent and subtracts one. * * This may be more accurate than `Complex(x).exp().sub(1)` if * `x` is small. * * @returns {Complex} */ expm1() { var a = this["re"]; var b = this["im"]; return new _Complex(Math.expm1(a) * Math.cos(b) + cosm1(b), Math.exp(a) * Math.sin(b)); } /** * Calculate the natural log * * @returns {Complex} */ log() { var a = this["re"]; var b = this["im"]; if (b === 0 && a > 0) { } return new _Complex(logHypot(a, b), Math.atan2(b, a)); } /** * Calculate the magnitude of the complex number * * @returns {number} */ abs() { return hypot(this["re"], this["im"]); } /** * Calculate the angle of the complex number * * @returns {number} */ arg() { return Math.atan2(this["im"], this["re"]); } /** * Calculate the sine of the complex number * * @returns {Complex} */ sin() { var a = this["re"]; var b = this["im"]; return new _Complex(Math.sin(a) * cosh(b), Math.cos(a) * sinh(b)); } /** * Calculate the cosine * * @returns {Complex} */ cos() { var a = this["re"]; var b = this["im"]; return new _Complex(Math.cos(a) * cosh(b), -Math.sin(a) * sinh(b)); } /** * Calculate the tangent * * @returns {Complex} */ tan() { var a = 2 * this["re"]; var b = 2 * this["im"]; var d = Math.cos(a) + cosh(b); return new _Complex(Math.sin(a) / d, sinh(b) / d); } /** * Calculate the cotangent * * @returns {Complex} */ cot() { var a = 2 * this["re"]; var b = 2 * this["im"]; var d = Math.cos(a) - cosh(b); return new _Complex(-Math.sin(a) / d, sinh(b) / d); } /** * Calculate the secant * * @returns {Complex} */ sec() { var a = this["re"]; var b = this["im"]; var d = 0.5 * cosh(2 * b) + 0.5 * Math.cos(2 * a); return new _Complex(Math.cos(a) * cosh(b) / d, Math.sin(a) * sinh(b) / d); } /** * Calculate the cosecans * * @returns {Complex} */ csc() { var a = this["re"]; var b = this["im"]; var d = 0.5 * cosh(2 * b) - 0.5 * Math.cos(2 * a); return new _Complex(Math.sin(a) * cosh(b) / d, -Math.cos(a) * sinh(b) / d); } /** * Calculate the complex arcus sinus * * @returns {Complex} */ asin() { var a = this["re"]; var b = this["im"]; var t1 = new _Complex(b * b - a * a + 1, -2 * a * b)["sqrt"](); var t2 = new _Complex(t1["re"] - b, t1["im"] + a)["log"](); return new _Complex(t2["im"], -t2["re"]); } /** * Calculate the complex arcus cosinus * * @returns {Complex} */ acos() { var a = this["re"]; var b = this["im"]; var t1 = new _Complex(b * b - a * a + 1, -2 * a * b)["sqrt"](); var t2 = new _Complex(t1["re"] - b, t1["im"] + a)["log"](); return new _Complex(Math.PI / 2 - t2["im"], t2["re"]); } /** * Calculate the complex arcus tangent * * @returns {Complex} */ atan() { var a = this["re"]; var b = this["im"]; if (a === 0) { if (b === 1) { return new _Complex(0, Infinity); } if (b === -1) { return new _Complex(0, -Infinity); } } var d = a * a + (1 - b) * (1 - b); var t1 = new _Complex((1 - b * b - a * a) / d, -2 * a / d).log(); return new _Complex(-0.5 * t1["im"], 0.5 * t1["re"]); } /** * Calculate the complex arcus cotangent * * @returns {Complex} */ acot() { var a = this["re"]; var b = this["im"]; if (b === 0) { return new _Complex(Math.atan2(1, a), 0); } var d = a * a + b * b; return d !== 0 ? new _Complex(a / d, -b / d).atan() : new _Complex(a !== 0 ? a / 0 : 0, b !== 0 ? -b / 0 : 0).atan(); } /** * Calculate the complex arcus secant * * @returns {Complex} */ asec() { var a = this["re"]; var b = this["im"]; if (a === 0 && b === 0) { return new _Complex(0, Infinity); } var d = a * a + b * b; return d !== 0 ? new _Complex(a / d, -b / d).acos() : new _Complex(a !== 0 ? a / 0 : 0, b !== 0 ? -b / 0 : 0).acos(); } /** * Calculate the complex arcus cosecans * * @returns {Complex} */ acsc() { var a = this["re"]; var b = this["im"]; if (a === 0 && b === 0) { return new _Complex(Math.PI / 2, Infinity); } var d = a * a + b * b; return d !== 0 ? new _Complex(a / d, -b / d).asin() : new _Complex(a !== 0 ? a / 0 : 0, b !== 0 ? -b / 0 : 0).asin(); } /** * Calculate the complex sinh * * @returns {Complex} */ sinh() { var a = this["re"]; var b = this["im"]; return new _Complex(sinh(a) * Math.cos(b), cosh(a) * Math.sin(b)); } /** * Calculate the complex cosh * * @returns {Complex} */ cosh() { var a = this["re"]; var b = this["im"]; return new _Complex(cosh(a) * Math.cos(b), sinh(a) * Math.sin(b)); } /** * Calculate the complex tanh * * @returns {Complex} */ tanh() { var a = 2 * this["re"]; var b = 2 * this["im"]; var d = cosh(a) + Math.cos(b); return new _Complex(sinh(a) / d, Math.sin(b) / d); } /** * Calculate the complex coth * * @returns {Complex} */ coth() { var a = 2 * this["re"]; var b = 2 * this["im"]; var d = cosh(a) - Math.cos(b); return new _Complex(sinh(a) / d, -Math.sin(b) / d); } /** * Calculate the complex coth * * @returns {Complex} */ csch() { var a = this["re"]; var b = this["im"]; var d = Math.cos(2 * b) - cosh(2 * a); return new _Complex(-2 * sinh(a) * Math.cos(b) / d, 2 * cosh(a) * Math.sin(b) / d); } /** * Calculate the complex sech * * @returns {Complex} */ sech() { var a = this["re"]; var b = this["im"]; var d = Math.cos(2 * b) + cosh(2 * a); return new _Complex(2 * cosh(a) * Math.cos(b) / d, -2 * sinh(a) * Math.sin(b) / d); } /** * Calculate the complex asinh * * @returns {Complex} */ asinh() { var tmp = this["im"]; this["im"] = -this["re"]; this["re"] = tmp; var res = this["asin"](); this["re"] = -this["im"]; this["im"] = tmp; tmp = res["re"]; res["re"] = -res["im"]; res["im"] = tmp; return res; } /** * Calculate the complex acosh * * @returns {Complex} */ acosh() { var res = this["acos"](); if (res["im"] <= 0) { var tmp = res["re"]; res["re"] = -res["im"]; res["im"] = tmp; } else { var tmp = res["im"]; res["im"] = -res["re"]; res["re"] = tmp; } return res; } /** * Calculate the complex atanh * * @returns {Complex} */ atanh() { var a = this["re"]; var b = this["im"]; var noIM = a > 1 && b === 0; var oneMinus = 1 - a; var onePlus = 1 + a; var d = oneMinus * oneMinus + b * b; var x = d !== 0 ? new _Complex((onePlus * oneMinus - b * b) / d, (b * oneMinus + onePlus * b) / d) : new _Complex(a !== -1 ? a / 0 : 0, b !== 0 ? b / 0 : 0); var temp = x["re"]; x["re"] = logHypot(x["re"], x["im"]) / 2; x["im"] = Math.atan2(x["im"], temp) / 2; if (noIM) { x["im"] = -x["im"]; } return x; } /** * Calculate the complex acoth * * @returns {Complex} */ acoth() { var a = this["re"]; var b = this["im"]; if (a === 0 && b === 0) { return new _Complex(0, Math.PI / 2); } var d = a * a + b * b; return d !== 0 ? new _Complex(a / d, -b / d).atanh() : new _Complex(a !== 0 ? a / 0 : 0, b !== 0 ? -b / 0 : 0).atanh(); } /** * Calculate the complex acsch * * @returns {Complex} */ acsch() { var a = this["re"]; var b = this["im"]; if (b === 0) { return new _Complex(a !== 0 ? Math.log(a + Math.sqrt(a * a + 1)) : Infinity, 0); } var d = a * a + b * b; return d !== 0 ? new _Complex(a / d, -b / d).asinh() : new _Complex(a !== 0 ? a / 0 : 0, b !== 0 ? -b / 0 : 0).asinh(); } /** * Calculate the complex asech * * @returns {Complex} */ asech() { var a = this["re"]; var b = this["im"]; if (this["isZero"]()) { return _Complex["INFINITY"]; } var d = a * a + b * b; return d !== 0 ? new _Complex(a / d, -b / d).acosh() : new _Complex(a !== 0 ? a / 0 : 0, b !== 0 ? -b / 0 : 0).acosh(); } /** * Calculate the complex inverse 1/z * * @returns {Complex} */ inverse() { if (this["isZero"]()) { return _Complex["INFINITY"]; } if (this["isInfinite"]()) { return _Complex["ZERO"]; } var a = this["re"]; var b = this["im"]; var d = a * a + b * b; return new _Complex(a / d, -b / d); } /** * Returns the complex conjugate * * @returns {Complex} */ conjugate() { return new _Complex(this["re"], -this["im"]); } /** * Gets the negated complex number * * @returns {Complex} */ neg() { return new _Complex(-this["re"], -this["im"]); } /** * Ceils the actual complex number * * @returns {Complex} */ ceil(places) { places = Math.pow(10, places || 0); return new _Complex(Math.ceil(this["re"] * places) / places, Math.ceil(this["im"] * places) / places); } /** * Floors the actual complex number * * @returns {Complex} */ floor(places) { places = Math.pow(10, places || 0); return new _Complex(Math.floor(this["re"] * places) / places, Math.floor(this["im"] * places) / places); } /** * Ceils the actual complex number * * @returns {Complex} */ round(places) { places = Math.pow(10, places || 0); return new _Complex(Math.round(this["re"] * places) / places, Math.round(this["im"] * places) / places); } /** * Compares two complex numbers * * **Note:** new Complex(Infinity).equals(Infinity) === false * * @returns {boolean} */ equals(a, b) { var z = new _Complex(a, b); return Math.abs(z["re"] - this["re"]) <= _Complex["EPSILON"] && Math.abs(z["im"] - this["im"]) <= _Complex["EPSILON"]; } /** * Clones the actual object * * @returns {Complex} */ clone() { return new _Complex(this["re"], this["im"]); } /** * Gets a string of the actual complex number * * @returns {string} */ toString() { var a = this["re"]; var b = this["im"]; var ret = ""; if (this["isNaN"]()) { return "NaN"; } if (this["isInfinite"]()) { return "Infinity"; } if (Math.abs(a) < _Complex["EPSILON"]) { a = 0; } if (Math.abs(b) < _Complex["EPSILON"]) { b = 0; } if (b === 0) { return ret + a; } if (a !== 0) { ret += a; ret += " "; if (b < 0) { b = -b; ret += "-"; } else { ret += "+"; } ret += " "; } else if (b < 0) { b = -b; ret += "-"; } if (1 !== b) { ret += b; } return ret + "i"; } /** * Returns the actual number as a vector * * @returns {Array} */ toVector() { return [this["re"], this["im"]]; } /** * Returns the actual real value of the current object * * @returns {number|null} */ valueOf() { if (this["im"] === 0) { return this["re"]; } return null; } /** * Determines whether a complex number is not on the Riemann sphere. * * @returns {boolean} */ isNaN() { return isNaN(this["re"]) || isNaN(this["im"]); } /** * Determines whether or not a complex number is at the zero pole of the * Riemann sphere. * * @returns {boolean} */ isZero() { return this["im"] === 0 && this["re"] === 0; } /** * Determines whether a complex number is not at the infinity pole of the * Riemann sphere. * * @returns {boolean} */ isFinite() { return isFinite(this["re"]) && isFinite(this["im"]); } /** * Determines whether or not a complex number is at the infinity pole of the * Riemann sphere. * * @returns {boolean} */ isInfinite() { return !(this["isNaN"]() || this["isFinite"]()); } }; Complex["ZERO"] = new Complex(0, 0); Complex["ONE"] = new Complex(1, 0); Complex["I"] = new Complex(0, 1); Complex["PI"] = new Complex(Math.PI, 0); Complex["E"] = new Complex(Math.E, 0); Complex["INFINITY"] = new Complex(Infinity, Infinity); Complex["NAN"] = new Complex(NaN, NaN); Complex["EPSILON"] = 1e-15; // node_modules/decimal.js/decimal.mjs var EXP_LIMIT = 9e15; var MAX_DIGITS = 1e9; var NUMERALS = "0123456789abcdef"; var LN10 = "2.3025850929940456840179914546843642076011014886287729760333279009675726096773524802359972050895982983419677840422862486334095254650828067566662873690987816894829072083255546808437998948262331985283935053089653777326288461633662222876982198867465436674744042432743651550489343149393914796194044002221051017141748003688084012647080685567743216228355220114804663715659121373450747856947683463616792101806445070648000277502684916746550586856935673420670581136429224554405758925724208241314695689016758940256776311356919292033376587141660230105703089634572075440370847469940168269282808481184289314848524948644871927809676271275775397027668605952496716674183485704422507197965004714951050492214776567636938662976979522110718264549734772662425709429322582798502585509785265383207606726317164309505995087807523710333101197857547331541421808427543863591778117054309827482385045648019095610299291824318237525357709750539565187697510374970888692180205189339507238539205144634197265287286965110862571492198849978748873771345686209167058"; var PI = "3.1415926535897932384626433832795028841971693993751058209749445923078164062862089986280348253421170679821480865132823066470938446095505822317253594081284811174502841027019385211055596446229489549303819644288109756659334461284756482337867831652712019091456485669234603486104543266482133936072602491412737245870066063155881748815209209628292540917153643678925903600113305305488204665213841469519415116094330572703657595919530921861173819326117931051185480744623799627495673518857527248912279381830119491298336733624406566430860213949463952247371907021798609437027705392171762931767523846748184676694051320005681271452635608277857713427577896091736371787214684409012249534301465495853710507922796892589235420199561121290219608640344181598136297747713099605187072113499999983729780499510597317328160963185950244594553469083026425223082533446850352619311881710100031378387528865875332083814206171776691473035982534904287554687311595628638823537875937519577818577805321712268066130019278766111959092164201989380952572010654858632789"; var DEFAULTS = { // These values must be integers within the stated ranges (inclusive). // Most of these values can be changed at run-time using the `Decimal.config` method. // The maximum number of significant digits of the result of a calculation or base conversion. // E.g. `Decimal.config({ precision: 20 });` precision: 20, // 1 to MAX_DIGITS // The rounding mode used when rounding to `precision`. // // ROUND_UP 0 Away from zero. // ROUND_DOWN 1 Towards zero. // ROUND_CEIL 2 Towards +Infinity. // ROUND_FLOOR 3 Towards -Infinity. // ROUND_HALF_UP 4 Towards nearest neighbour. If equidistant, up. // ROUND_HALF_DOWN 5 Towards nearest neighbour. If equidistant, down. // ROUND_HALF_EVEN 6 Towards nearest neighbour. If equidistant, towards even neighbour. // ROUND_HALF_CEIL 7 Towards nearest neighbour. If equidistant, towards +Infinity. // ROUND_HALF_FLOOR 8 Towards nearest neighbour. If equidistant, towards -Infinity. // // E.g. // `Decimal.rounding = 4;` // `Decimal.rounding = Decimal.ROUND_HALF_UP;` rounding: 4, // 0 to 8 // The modulo mode used when calculating the modulus: a mod n. // The quotient (q = a / n) is calculated according to the corresponding rounding mode. // The remainder (r) is calculated as: r = a - n * q. // // UP 0 The remainder is positive if the dividend is negative, else is negative. // DOWN 1 The remainder has the same sign as the dividend (JavaScript %). // FLOOR 3 The remainder has the same sign as the divisor (Python %). // HALF_EVEN 6 The IEEE 754 remainder function. // EUCLID 9 Euclidian division. q = sign(n) * floor(a / abs(n)). Always positive. // // Truncated division (1), floored division (3), the IEEE 754 remainder (6), and Euclidian // division (9) are commonly used for the modulus operation. The other rounding modes can also // be used, but they may not give useful results. modulo: 1, // 0 to 9 // The exponent value at and beneath which `toString` returns exponential notation. // JavaScript numbers: -7 toExpNeg: -7, // 0 to -EXP_LIMIT // The exponent value at and above which `toString` returns exponential notation. // JavaScript numbers: 21 toExpPos: 21, // 0 to EXP_LIMIT // The minimum exponent value, beneath which underflow to zero occurs. // JavaScript numbers: -324 (5e-324) minE: -EXP_LIMIT, // -1 to -EXP_LIMIT // The maximum exponent value, above which overflow to Infinity occurs. // JavaScript numbers: 308 (1.7976931348623157e+308) maxE: EXP_LIMIT, // 1 to EXP_LIMIT // Whether to use cryptographically-secure random number generation, if available. crypto: false // true/false }; var inexact; var quadrant; var external = true; var decimalError = "[DecimalError] "; var invalidArgument = decimalError + "Invalid argument: "; var precisionLimitExceeded = decimalError + "Precision limit exceeded"; var cryptoUnavailable = decimalError + "crypto unavailable"; var tag = "[object Decimal]"; var mathfloor = Math.floor; var mathpow = Math.pow; var isBinary = /^0b([01]+(\.[01]*)?|\.[01]+)(p[+-]?\d+)?$/i; var isHex = /^0x([0-9a-f]+(\.[0-9a-f]*)?|\.[0-9a-f]+)(p[+-]?\d+)?$/i; var isOctal = /^0o([0-7]+(\.[0-7]*)?|\.[0-7]+)(p[+-]?\d+)?$/i; var isDecimal = /^(\d+(\.\d*)?|\.\d+)(e[+-]?\d+)?$/i; var BASE = 1e7; var LOG_BASE = 7; var MAX_SAFE_INTEGER = 9007199254740991; var LN10_PRECISION = LN10.length - 1; var PI_PRECISION = PI.length - 1; var P = { toStringTag: tag }; P.absoluteValue = P.abs = function() { var x = new this.constructor(this); if (x.s < 0) x.s = 1; return finalise(x); }; P.ceil = function() { return finalise(new this.constructor(this), this.e + 1, 2); }; P.clampedTo = P.clamp = function(min2, max2) { var k, x = this, Ctor = x.constructor; min2 = new Ctor(min2); max2 = new Ctor(max2); if (!min2.s || !max2.s) return new Ctor(NaN); if (min2.gt(max2)) throw Error(invalidArgument + max2); k = x.cmp(min2); return k < 0 ? min2 : x.cmp(max2) > 0 ? max2 : new Ctor(x); }; P.comparedTo = P.cmp = function(y) { var i, j, xdL, ydL, x = this, xd = x.d, yd = (y = new x.constructor(y)).d, xs = x.s, ys = y.s; if (!xd || !yd) { return !xs || !ys ? NaN : xs !== ys ? xs : xd === yd ? 0 : !xd ^ xs < 0 ? 1 : -1; } if (!xd[0] || !yd[0]) return xd[0] ? xs : yd[0] ? -ys : 0; if (xs !== ys) return xs; if (x.e !== y.e) return x.e > y.e ^ xs < 0 ? 1 : -1; xdL = xd.length; ydL = yd.length; for (i = 0, j = xdL < ydL ? xdL : ydL; i < j; ++i) { if (xd[i] !== yd[i]) return xd[i] > yd[i] ^ xs < 0 ? 1 : -1; } return xdL === ydL ? 0 : xdL > ydL ^ xs < 0 ? 1 : -1; }; P.cosine = P.cos = function() { var pr, rm, x = this, Ctor = x.constructor; if (!x.d) return new Ctor(NaN); if (!x.d[0]) return new Ctor(1); pr = Ctor.precision; rm = Ctor.rounding; Ctor.precision = pr + Math.max(x.e, x.sd()) + LOG_BASE; Ctor.rounding = 1; x = cosine(Ctor, toLessThanHalfPi(Ctor, x)); Ctor.precision = pr; Ctor.rounding = rm; return finalise(quadrant == 2 || quadrant == 3 ? x.neg() : x, pr, rm, true); }; P.cubeRoot = P.cbrt = function() { var e, m, n, r, rep, s, sd, t, t3, t3plusx, x = this, Ctor = x.constructor; if (!x.isFinite() || x.isZero()) return new Ctor(x); external = false; s = x.s * mathpow(x.s * x, 1 / 3); if (!s || Math.abs(s) == 1 / 0) { n = digitsToString(x.d); e = x.e; if (s = (e - n.length + 1) % 3) n += s == 1 || s == -2 ? "0" : "00"; s = mathpow(n, 1 / 3); e = mathfloor((e + 1) / 3) - (e % 3 == (e < 0 ? -1 : 2)); if (s == 1 / 0) { n = "5e" + e; } else { n = s.toExponential(); n = n.slice(0, n.indexOf("e") + 1) + e; } r = new Ctor(n); r.s = x.s; } else { r = new Ctor(s.toString()); } sd = (e = Ctor.precision) + 3; for (; ; ) { t = r; t3 = t.times(t).times(t); t3plusx = t3.plus(x); r = divide(t3plusx.plus(x).times(t), t3plusx.plus(t3), sd + 2, 1); if (digitsToString(t.d).slice(0, sd) === (n = digitsToString(r.d)).slice(0, sd)) { n = n.slice(sd - 3, sd + 1); if (n == "9999" || !rep && n == "4999") { if (!rep) { finalise(t, e + 1, 0); if (t.times(t).times(t).eq(x)) { r = t; break; } } sd += 4; rep = 1; } else { if (!+n || !+n.slice(1) && n.charAt(0) == "5") { finalise(r, e + 1, 1); m = !r.times(r).times(r).eq(x); } break; } } } external = true; return finalise(r, e, Ctor.rounding, m); }; P.decimalPlaces = P.dp = function() { var w, d = this.d, n = NaN; if (d) { w = d.length - 1; n = (w - mathfloor(this.e / LOG_BASE)) * LOG_BASE; w = d[w]; if (w) for (; w % 10 == 0; w /= 10) n--; if (n < 0) n = 0; } return n; }; P.dividedBy = P.div = function(y) { return divide(this, new this.constructor(y)); }; P.dividedToIntegerBy = P.divToInt = function(y) { var x = this, Ctor = x.constructor; return finalise(divide(x, new Ctor(y), 0, 1, 1), Ctor.precision, Ctor.rounding); }; P.equals = P.eq = function(y) { return this.cmp(y) === 0; }; P.floor = function() { return finalise(new this.constructor(this), this.e + 1, 3); }; P.greaterThan = P.gt = function(y) { return this.cmp(y) > 0; }; P.greaterThanOrEqualTo = P.gte = function(y) { var k = this.cmp(y); return k == 1 || k === 0; }; P.hyperbolicCosine = P.cosh = function() { var k, n, pr, rm, len, x = this, Ctor = x.constructor, one = new Ctor(1); if (!x.isFinite()) return new Ctor(x.s ? 1 / 0 : NaN); if (x.isZero()) return one; pr = Ctor.precision; rm = Ctor.rounding; Ctor.precision = pr + Math.max(x.e, x.sd()) + 4; Ctor.rounding = 1; len = x.d.length; if (len < 32) { k = Math.ceil(len / 3); n = (1 / tinyPow(4, k)).toString(); } else { k = 16; n = "2.3283064365386962890625e-10"; } x = taylorSeries(Ctor, 1, x.times(n), new Ctor(1), true); var cosh2_x, i = k, d8 = new Ctor(8); for (; i--; ) { cosh2_x = x.times(x); x = one.minus(cosh2_x.times(d8.minus(cosh2_x.times(d8)))); } return finalise(x, Ctor.precision = pr, Ctor.rounding = rm, true); }; P.hyperbolicSine = P.sinh = function() { var k, pr, rm, len, x = this, Ctor = x.constructor; if (!x.isFinite() || x.isZero()) return new Ctor(x); pr = Ctor.precision; rm = Ctor.rounding; Ctor.precision = pr + Math.max(x.e, x.sd()) + 4; Ctor.rounding = 1; len = x.d.length; if (len < 3) { x = taylorSeries(Ctor, 2, x, x, true); } else { k = 1.4 * Math.sqrt(len); k = k > 16 ? 16 : k | 0; x = x.times(1 / tinyPow(5, k)); x = taylorSeries(Ctor, 2, x, x, true); var sinh2_x, d5 = new Ctor(5), d16 = new Ctor(16), d20 = new Ctor(20); for (; k--; ) { sinh2_x = x.times(x); x = x.times(d5.plus(sinh2_x.times(d16.times(sinh2_x).plus(d20)))); } } Ctor.precision = pr; Ctor.rounding = rm; return finalise(x, pr, rm, true); }; P.hyperbolicTangent = P.tanh = function() { var pr, rm, x = this, Ctor = x.constructor; if (!x.isFinite()) return new Ctor(x.s); if (x.isZero()) return new Ctor(x); pr = Ctor.precision; rm = Ctor.rounding; Ctor.precision = pr + 7; Ctor.rounding = 1; return divide(x.sinh(), x.cosh(), Ctor.precision = pr, Ctor.rounding = rm); }; P.inverseCosine = P.acos = function() { var halfPi, x = this, Ctor = x.constructor, k = x.abs().cmp(1), pr = Ctor.precision, rm = Ctor.rounding; if (k !== -1) { return k === 0 ? x.isNeg() ? getPi(Ctor, pr, rm) : new Ctor(0) : new Ctor(NaN); } if (x.isZero()) return getPi(Ctor, pr + 4, rm).times(0.5); Ctor.precision = pr + 6; Ctor.rounding = 1; x = x.asin(); halfPi = getPi(Ctor, pr + 4, rm).times(0.5); Ctor.precision = pr; Ctor.rounding = rm; return halfPi.minus(x); }; P.inverseHyperbolicCosine = P.acosh = function() { var pr, rm, x = this, Ctor = x.constructor; if (x.lte(1)) return new Ctor(x.eq(1) ? 0 : NaN); if (!x.isFinite()) return new Ctor(x); pr = Ctor.precision; rm = Ctor.rounding; Ctor.precision = pr + Math.max(Math.abs(x.e), x.sd()) + 4; Ctor.rounding = 1; external = false; x = x.times(x).minus(1).sqrt().plus(x); external = true; Ctor.precision = pr; Ctor.rounding = rm; return x.ln(); }; P.inverseHyperbolicSine = P.asinh = function() { var pr, rm, x = this, Ctor = x.constructor; if (!x.isFinite() || x.isZero()) return new Ctor(x); pr = Ctor.precision; rm = Ctor.rounding; Ctor.precision = pr + 2 * Math.max(Math.abs(x.e), x.sd()) + 6; Ctor.rounding = 1; external = false; x = x.times(x).plus(1).sqrt().plus(x); external = true; Ctor.precision = pr; Ctor.rounding = rm; return x.ln(); }; P.inverseHyperbolicTangent = P.atanh = function() { var pr, rm, wpr, xsd, x = this, Ctor = x.constructor; if (!x.isFinite()) return new Ctor(NaN); if (x.e >= 0) return new Ctor(x.abs().eq(1) ? x.s / 0 : x.isZero() ? x : NaN); pr = Ctor.precision; rm = Ctor.rounding; xsd = x.sd(); if (Math.max(xsd, pr) < 2 * -x.e - 1) return finalise(new Ctor(x), pr, rm, true); Ctor.precision = wpr = xsd - x.e; x = divide(x.plus(1), new Ctor(1).minus(x), wpr + pr, 1); Ctor.precision = pr + 4; Ctor.rounding = 1; x = x.ln(); Ctor.precision = pr; Ctor.rounding = rm; return x.times(0.5); }; P.inverseSine = P.asin = function() { var halfPi, k, pr, rm, x = this, Ctor = x.constructor; if (x.isZero()) return new Ctor(x); k = x.abs().cmp(1); pr = Ctor.precision; rm = Ctor.rounding; if (k !== -1) { if (k === 0) { halfPi = getPi(Ctor, pr + 4, rm).times(0.5); halfPi.s = x.s; return halfPi; } return new Ctor(NaN); } Ctor.precision = pr + 6; Ctor.rounding = 1; x = x.div(new Ctor(1).minus(x.times(x)).sqrt().plus(1)).atan(); Ctor.precision = pr; Ctor.rounding = rm; return x.times(2); }; P.inverseTangent = P.atan = function() { var i, j, k, n, px, t, r, wpr, x2, x = this, Ctor = x.constructor, pr = Ctor.precision, rm = Ctor.rounding; if (!x.isFinite()) { if (!x.s) return new Ctor(NaN); if (pr + 4 <= PI_PRECISION) { r = getPi(Ctor, pr + 4, rm).times(0.5); r.s = x.s; return r; } } else if (x.isZero()) { return new Ctor(x); } else if (x.abs().eq(1) && pr + 4 <= PI_PRECISION) { r = getPi(Ctor, pr + 4, rm).times(0.25); r.s = x.s; return r; } Ctor.precision = wpr = pr + 10; Ctor.rounding = 1; k = Math.min(28, wpr / LOG_BASE + 2 | 0); for (i = k; i; --i) x = x.div(x.times(x).plus(1).sqrt().plus(1)); external = false; j = Math.ceil(wpr / LOG_BASE); n = 1; x2 = x.times(x); r = new Ctor(x); px = x; for (; i !== -1; ) { px = px.times(x2); t = r.minus(px.div(n += 2)); px = px.times(x2); r = t.plus(px.div(n += 2)); if (r.d[j] !== void 0) for (i = j; r.d[i] === t.d[i] && i--; ) ; } if (k) r = r.times(2 << k - 1); external = true; return finalise(r, Ctor.precision = pr, Ctor.rounding = rm, true); }; P.isFinite = function() { return !!this.d; }; P.isInteger = P.isInt = function() { return !!this.d && mathfloor(this.e / LOG_BASE) > this.d.length - 2; }; P.isNaN = function() { return !this.s; }; P.isNegative = P.isNeg = function() { return this.s < 0; }; P.isPositive = P.isPos = function() { return this.s > 0; }; P.isZero = function() { return !!this.d && this.d[0] === 0; }; P.lessThan = P.lt = function(y) { return this.cmp(y) < 0; }; P.lessThanOrEqualTo = P.lte = function(y) { return this.cmp(y) < 1; }; P.logarithm = P.log = function(base) { var isBase10, d, denominator, k, inf, num, sd, r, arg = this, Ctor = arg.constructor, pr = Ctor.precision, rm = Ctor.rounding, guard = 5; if (base == null) { base = new Ctor(10); isBase10 = true; } else { base = new Ctor(base); d = base.d; if (base.s < 0 || !d || !d[0] || base.eq(1)) return new Ctor(NaN); isBase10 = base.eq(10); } d = arg.d; if (arg.s < 0 || !d || !d[0] || arg.eq(1)) { return new Ctor(d && !d[0] ? -1 / 0 : arg.s != 1 ? NaN : d ? 0 : 1 / 0); } if (isBase10) { if (d.length > 1) { inf = true; } else { for (k = d[0]; k % 10 === 0; ) k /= 10; inf = k !== 1; } } external = false; sd = pr + guard; num = naturalLogarithm(arg, sd); denominator = isBase10 ? getLn10(Ctor, sd + 10) : naturalLogarithm(base, sd); r = divide(num, denominator, sd, 1); if (checkRoundingDigits(r.d, k = pr, rm)) { do { sd += 10; num = naturalLogarithm(arg, sd); denominator = isBase10 ? getLn10(Ctor, sd + 10) : naturalLogarithm(base, sd); r = divide(num, denominator, sd, 1); if (!inf) { if (+digitsToString(r.d).slice(k + 1, k + 15) + 1 == 1e14) { r = finalise(r, pr + 1, 0); } break; } } while (checkRoundingDigits(r.d, k += 10, rm)); } external = true; return finalise(r, pr, rm); }; P.minus = P.sub = function(y) { var d, e, i, j, k, len, pr, rm, xd, xe, xLTy, yd, x = this, Ctor = x.constructor; y = new Ctor(y); if (!x.d || !y.d) { if (!x.s || !y.s) y = new Ctor(NaN); else if (x.d) y.s = -y.s; else y = new Ctor(y.d || x.s !== y.s ? x : NaN); return y; } if (x.s != y.s) { y.s = -y.s; return x.plus(y); } xd = x.d; yd = y.d; pr = Ctor.precision; rm = Ctor.rounding; if (!xd[0] || !yd[0]) { if (yd[0]) y.s = -y.s; else if (xd[0]) y = new Ctor(x); else return new Ctor(rm === 3 ? -0 : 0); return external ? finalise(y, pr, rm) : y; } e = mathfloor(y.e / LOG_BASE); xe = mathfloor(x.e / LOG_BASE); xd = xd.slice(); k = xe - e; if (k) { xLTy = k < 0; if (xLTy) { d = xd; k = -k; len = yd.length; } else { d = yd; e = xe; len = xd.length; } i = Math.max(Math.ceil(pr / LOG_BASE), len) + 2; if (k > i) { k = i; d.length = 1; } d.reverse(); for (i = k; i--; ) d.push(0); d.reverse(); } else { i = xd.length; len = yd.length; xLTy = i < len; if (xLTy) len = i; for (i = 0; i < len; i++) { if (xd[i] != yd[i]) { xLTy = xd[i] < yd[i]; break; } } k = 0; } if (xLTy) { d = xd; xd = yd; yd = d; y.s = -y.s; } len = xd.length; for (i = yd.length - len; i > 0; --i) xd[len++] = 0; for (i = yd.length; i > k; ) { if (xd[--i] < yd[i]) { for (j = i; j && xd[--j] === 0; ) xd[j] = BASE - 1; --xd[j]; xd[i] += BASE; } xd[i] -= yd[i]; } for (; xd[--len] === 0; ) xd.pop(); for (; xd[0] === 0; xd.shift()) --e; if (!xd[0]) return new Ctor(rm === 3 ? -0 : 0); y.d = xd; y.e = getBase10Exponent(xd, e); return external ? finalise(y, pr, rm) : y; }; P.modulo = P.mod = function(y) { var q, x = this, Ctor = x.constructor; y = new Ctor(y); if (!x.d || !y.s || y.d && !y.d[0]) return new Ctor(NaN); if (!y.d || x.d && !x.d[0]) { return finalise(new Ctor(x), Ctor.precision, Ctor.rounding); } external = false; if (Ctor.modulo == 9) { q = divide(x, y.abs(), 0, 3, 1); q.s *= y.s; } else { q = divide(x, y, 0, Ctor.modulo, 1); } q = q.times(y); external = true; return x.minus(q); }; P.naturalExponential = P.exp = function() { return naturalExponential(this); }; P.naturalLogarithm = P.ln = function() { return naturalLogarithm(this); }; P.negated = P.neg = function() { var x = new this.constructor(this); x.s = -x.s; return finalise(x); }; P.plus = P.add = function(y) { var carry, d, e, i, k, len, pr, rm, xd, yd, x = this, Ctor = x.constructor; y = new Ctor(y); if (!x.d || !y.d) { if (!x.s || !y.s) y = new Ctor(NaN); else if (!x.d) y = new Ctor(y.d || x.s === y.s ? x : NaN); return y; } if (x.s != y.s) { y.s = -y.s; return x.minus(y); } xd = x.d; yd = y.d; pr = Ctor.precision; rm = Ctor.rounding; if (!xd[0] || !yd[0]) { if (!yd[0]) y = new Ctor(x); return external ? finalise(y, pr, rm) : y; } k = mathfloor(x.e / LOG_BASE); e = mathfloor(y.e / LOG_BASE); xd = xd.slice(); i = k - e; if (i) { if (i < 0) { d = xd; i = -i; len = yd.length; } else { d = yd; e = k; len = xd.length; } k = Math.ceil(pr / LOG_BASE); len = k > len ? k + 1 : len + 1; if (i > len) { i = len; d.length = 1; } d.reverse(); for (; i--; ) d.push(0); d.reverse(); } len = xd.length; i = yd.length; if (len - i < 0) { i = len; d = yd; yd = xd; xd = d; } for (carry = 0; i; ) { carry = (xd[--i] = xd[i] + yd[i] + carry) / BASE | 0; xd[i] %= BASE; } if (carry) { xd.unshift(carry); ++e; } for (len = xd.length; xd[--len] == 0; ) xd.pop(); y.d = xd; y.e = getBase10Exponent(xd, e); return external ? finalise(y, pr, rm) : y; }; P.precision = P.sd = function(z) { var k, x = this; if (z !== void 0 && z !== !!z && z !== 1 && z !== 0) throw Error(invalidArgument + z); if (x.d) { k = getPrecision(x.d); if (z && x.e + 1 > k) k = x.e + 1; } else { k = NaN; } return k; }; P.round = function() { var x = this, Ctor = x.constructor; return finalise(new Ctor(x), x.e + 1, Ctor.rounding); }; P.sine = P.sin = function() { var pr, rm, x = this, Ctor = x.constructor; if (!x.isFinite()) return new Ctor(NaN); if (x.isZero()) return new Ctor(x); pr = Ctor.precision; rm = Ctor.rounding; Ctor.precision = pr + Math.max(x.e, x.sd()) + LOG_BASE; Ctor.rounding = 1; x = sine(Ctor, toLessThanHalfPi(Ctor, x)); Ctor.precision = pr; Ctor.rounding = rm; return finalise(quadrant > 2 ? x.neg() : x, pr, rm, true); }; P.squareRoot = P.sqrt = function() { var m, n, sd, r, rep, t, x = this, d = x.d, e = x.e, s = x.s, Ctor = x.constructor; if (s !== 1 || !d || !d[0]) { return new Ctor(!s || s < 0 && (!d || d[0]) ? NaN : d ? x : 1 / 0); } external = false; s = Math.sqrt(+x); if (s == 0 || s == 1 / 0) { n = digitsToString(d); if ((n.length + e) % 2 == 0) n += "0"; s = Math.sqrt(n); e = mathfloor((e + 1) / 2) - (e < 0 || e % 2); if (s == 1 / 0) { n = "5e" + e; } else { n = s.toExponential(); n = n.slice(0, n.indexOf("e") + 1) + e; } r = new Ctor(n); } else { r = new Ctor(s.toString()); } sd = (e = Ctor.precision) + 3; for (; ; ) { t = r; r = t.plus(divide(x, t, sd + 2, 1)).times(0.5); if (digitsToString(t.d).slice(0, sd) === (n = digitsToString(r.d)).slice(0, sd)) { n = n.slice(sd - 3, sd + 1); if (n == "9999" || !rep && n == "4999") { if (!rep) { finalise(t, e + 1, 0); if (t.times(t).eq(x)) { r = t; break; } } sd += 4; rep = 1; } else { if (!+n || !+n.slice(1) && n.charAt(0) == "5") { finalise(r, e + 1, 1); m = !r.times(r).eq(x); } break; } } } external = true; return finalise(r, e, Ctor.rounding, m); }; P.tangent = P.tan = function() { var pr, rm, x = this, Ctor = x.constructor; if (!x.isFinite()) return new Ctor(NaN); if (x.isZero()) return new Ctor(x); pr = Ctor.precision; rm = Ctor.rounding; Ctor.precision = pr + 10; Ctor.rounding = 1; x = x.sin(); x.s = 1; x = divide(x, new Ctor(1).minus(x.times(x)).sqrt(), pr + 10, 0); Ctor.precision = pr; Ctor.rounding = rm; return finalise(quadrant == 2 || quadrant == 4 ? x.neg() : x, pr, rm, true); }; P.times = P.mul = function(y) { var carry, e, i, k, r, rL, t, xdL, ydL, x = this, Ctor = x.constructor, xd = x.d, yd = (y = new Ctor(y)).d; y.s *= x.s; if (!xd || !xd[0] || !yd || !yd[0]) { return new Ctor(!y.s || xd && !xd[0] && !yd || yd && !yd[0] && !xd ? NaN : !xd || !yd ? y.s / 0 : y.s * 0); } e = mathfloor(x.e / LOG_BASE) + mathfloor(y.e / LOG_BASE); xdL = xd.length; ydL = yd.length; if (xdL < ydL) { r = xd; xd = yd; yd = r; rL = xdL; xdL = ydL; ydL = rL; } r = []; rL = xdL + ydL; for (i = rL;