UNPKG

@hoff97/tensor-js

Version:

PyTorch like deep learning inferrence library

1,714 lines 111 kB
/** */ export class TensorF32 { static __wrap(ptr: any): any; /** * @param {Uint32Array} shape * @param {Float32Array} values * @returns {TensorF32} */ static create(shape: Uint32Array, values: Float32Array): TensorF32; /** * @param {Uint32Array} shape * @param {number} value * @returns {TensorF32} */ static create_constant(shape: Uint32Array, value: number): TensorF32; __destroy_into_raw(): number | undefined; ptr: number | undefined; free(): void; /** * @returns {Float32Array} */ get_vals(): Float32Array; /** * @returns {Uint32Array} */ get_shape(): Uint32Array; /** * @returns {TensorF32} */ exp(): TensorF32; /** * @returns {TensorF32} */ log(): TensorF32; /** * @returns {TensorF32} */ sqrt(): TensorF32; /** * @returns {TensorF32} */ sin(): TensorF32; /** * @returns {TensorF32} */ cos(): TensorF32; /** * @returns {TensorF32} */ tan(): TensorF32; /** * @returns {TensorF32} */ asin(): TensorF32; /** * @returns {TensorF32} */ acos(): TensorF32; /** * @returns {TensorF32} */ atan(): TensorF32; /** * @returns {TensorF32} */ sinh(): TensorF32; /** * @returns {TensorF32} */ cosh(): TensorF32; /** * @returns {TensorF32} */ tanh(): TensorF32; /** * @returns {TensorF32} */ asinh(): TensorF32; /** * @returns {TensorF32} */ acosh(): TensorF32; /** * @returns {TensorF32} */ atanh(): TensorF32; /** * @returns {TensorF32} */ sigmoid(): TensorF32; /** * @returns {TensorF32} */ floor(): TensorF32; /** * @returns {TensorF32} */ ceil(): TensorF32; /** * @returns {TensorF32} */ round(): TensorF32; /** * @param {number} power * @param {number} factor * @returns {TensorF32} */ power_scalar(power: number, factor: number): TensorF32; /** * @param {number} alpha * @param {number} beta * @returns {TensorF32} */ hard_sigmoid(alpha: number, beta: number): TensorF32; /** * @returns {TensorF32} */ abs(): TensorF32; /** * @returns {TensorF32} */ sign(): TensorF32; /** * @returns {TensorF32} */ negate(): TensorF32; /** * @param {number} factor * @param {number} add * @returns {TensorF32} */ add_multiply_scalar(factor: number, add: number): TensorF32; /** * @param {number} min * @param {number} max * @returns {TensorF32} */ clip(min: number, max: number): TensorF32; /** * @param {number} min * @returns {TensorF32} */ clip_min(min: number): TensorF32; /** * @param {number} max * @returns {TensorF32} */ clip_max(max: number): TensorF32; /** * @param {TensorF32} other * @returns {TensorF32} */ power(other: TensorF32): TensorF32; /** * @param {TensorF32} other * @returns {TensorF32} */ bce(other: TensorF32): TensorF32; /** * @param {TensorF32} other * @returns {TensorF32} */ bce_back(other: TensorF32): TensorF32; /** * @param {TensorF32} other * @param {number} alpha * @param {number} beta * @returns {TensorF32} */ addition(other: TensorF32, alpha: number, beta: number): TensorF32; /** * @param {TensorF32} other * @param {number} alpha * @param {number} beta * @returns {TensorF32} */ subtraction(other: TensorF32, alpha: number, beta: number): TensorF32; /** * @param {TensorF32} other * @param {number} alpha * @returns {TensorF32} */ multiply(other: TensorF32, alpha: number): TensorF32; /** * @param {TensorF32} other * @param {number} alpha * @returns {TensorF32} */ divide(other: TensorF32, alpha: number): TensorF32; /** * @param {number} min * @param {number} max * @param {TensorF32} grad * @returns {TensorF32} */ clip_backward(min: number, max: number, grad: TensorF32): TensorF32; /** * @param {number} min * @param {TensorF32} grad * @returns {TensorF32} */ clip_min_backward(min: number, grad: TensorF32): TensorF32; /** * @param {number} max * @param {TensorF32} grad * @returns {TensorF32} */ clip_max_backward(max: number, grad: TensorF32): TensorF32; /** * @param {Uint32Array} axes * @param {boolean} keep_dims * @returns {TensorF32} */ sum(axes: Uint32Array, keep_dims: boolean): TensorF32; /** * @param {Uint32Array} axes * @param {boolean} keep_dims * @returns {TensorF32} */ sum_square(axes: Uint32Array, keep_dims: boolean): TensorF32; /** * @param {Uint32Array} axes * @param {boolean} keep_dims * @returns {TensorF32} */ product(axes: Uint32Array, keep_dims: boolean): TensorF32; /** * @param {Uint32Array} axes * @param {boolean} keep_dims * @returns {TensorF32} */ max(axes: Uint32Array, keep_dims: boolean): TensorF32; /** * @param {Uint32Array} axes * @param {boolean} keep_dims * @returns {TensorF32} */ min(axes: Uint32Array, keep_dims: boolean): TensorF32; /** * @param {Uint32Array} axes * @param {boolean} keep_dims * @returns {TensorF32} */ reduce_mean(axes: Uint32Array, keep_dims: boolean): TensorF32; /** * @param {Uint32Array} axes * @param {boolean} keep_dims * @returns {TensorF32} */ reduce_mean_square(axes: Uint32Array, keep_dims: boolean): TensorF32; /** * @param {Uint32Array} axes * @param {boolean} keep_dims * @returns {TensorF32} */ reduce_log_sum(axes: Uint32Array, keep_dims: boolean): TensorF32; /** * @param {Uint32Array} axes * @param {boolean} keep_dims * @returns {TensorF32} */ reduce_log_sum_exp(axes: Uint32Array, keep_dims: boolean): TensorF32; /** * @param {TensorF32} kernel * @param {Uint32Array} dilations * @param {number} group * @param {Uint32Array} pads * @param {Uint32Array} strides * @param {number} activation * @returns {TensorF32} */ conv(kernel: TensorF32, dilations: Uint32Array, group: number, pads: Uint32Array, strides: Uint32Array, activation: number): TensorF32; /** * @param {TensorF32} kernel * @param {TensorF32} bias * @param {Uint32Array} dilations * @param {number} group * @param {Uint32Array} pads * @param {Uint32Array} strides * @param {number} activation * @returns {TensorF32} */ conv_with_bias(kernel: TensorF32, bias: TensorF32, dilations: Uint32Array, group: number, pads: Uint32Array, strides: Uint32Array, activation: number): TensorF32; /** * @param {TensorF32} kernel * @param {Uint32Array} dilations * @param {number} group * @param {Uint32Array} pads * @param {Uint32Array} strides * @returns {TensorF32} */ conv_transpose(kernel: TensorF32, dilations: Uint32Array, group: number, pads: Uint32Array, strides: Uint32Array): TensorF32; /** * @param {Uint32Array} kernel_shape * @param {Uint32Array} pads * @param {Uint32Array} strides * @param {boolean} include_pad * @returns {TensorF32} */ average_pool(kernel_shape: Uint32Array, pads: Uint32Array, strides: Uint32Array, include_pad: boolean): TensorF32; /** * @param {Uint32Array} pads * @param {number} mode * @param {number} value * @returns {TensorF32} */ pad(pads: Uint32Array, mode: number, value: number): TensorF32; /** * @param {Float32Array} scales * @returns {TensorF32} */ upsample(scales: Float32Array): TensorF32; /** * @param {TensorF32} mean * @param {TensorF32} variance * @param {number} epsilon * @param {TensorF32} scale * @param {TensorF32} bias * @returns {TensorF32} */ normalize(mean: TensorF32, variance: TensorF32, epsilon: number, scale: TensorF32, bias: TensorF32): TensorF32; /** * @param {TensorF32} other * @returns {TensorF32} */ matmul(other: TensorF32): TensorF32; /** * @param {TensorF32} other * @param {boolean} a_transpose * @param {boolean} b_transpose * @param {number} alpha * @returns {TensorF32} */ gemm(other: TensorF32, a_transpose: boolean, b_transpose: boolean, alpha: number): TensorF32; /** * @param {TensorF32} other * @param {boolean} a_transpose * @param {boolean} b_transpose * @param {number} alpha * @param {TensorF32} c * @param {number} beta * @returns {TensorF32} */ gemm_with_c(other: TensorF32, a_transpose: boolean, b_transpose: boolean, alpha: number, c: TensorF32, beta: number): TensorF32; /** * @param {TensorF32} values * @param {Uint32Array} starts * @returns {TensorF32} */ set_values(values: TensorF32, starts: Uint32Array): TensorF32; /** * @param {Uint32Array} shape * @returns {TensorF32} */ reshape(shape: Uint32Array): TensorF32; /** * @param {TensorF32} other * @param {number} axes * @returns {TensorF32} */ concat(other: TensorF32, axes: number): TensorF32; /** * @param {Uint32Array} permutation * @returns {TensorF32} */ transpose(permutation: Uint32Array): TensorF32; /** * @param {Uint32Array} repeats * @returns {TensorF32} */ repeat(repeats: Uint32Array): TensorF32; /** * @param {Uint32Array} shape * @returns {TensorF32} */ expand(shape: Uint32Array): TensorF32; /** * @returns {TensorF32} */ copy(): TensorF32; /** * @param {number} axis * @param {Uint32Array} indices * @param {Uint32Array} indice_shape * @returns {TensorF32} */ gather(axis: number, indices: Uint32Array, indice_shape: Uint32Array): TensorF32; /** * @param {Uint32Array} starts * @param {Uint32Array} ends * @param {Uint32Array} axis * @param {Int32Array} steps * @returns {TensorF32} */ slice(starts: Uint32Array, ends: Uint32Array, axis: Uint32Array, steps: Int32Array): TensorF32; /** * @param {TensorU32} indices * @param {TensorF32} b * @param {number} m * @returns {TensorF32} */ matmul_sparse_dense(indices: TensorU32, b: TensorF32, m: number): TensorF32; /** * @param {TensorU32} indices * @param {TensorF32} b * @param {Uint32Array} result_shape * @param {number} alpha * @param {number} beta * @returns {TensorF32} */ add_sparse_dense(indices: TensorU32, b: TensorF32, result_shape: Uint32Array, alpha: number, beta: number): TensorF32; /** * @param {TensorU32} indices * @param {TensorF32} b * @param {Uint32Array} result_shape * @param {number} alpha * @param {number} beta * @returns {TensorF32} */ subtract_sparse_dense(indices: TensorU32, b: TensorF32, result_shape: Uint32Array, alpha: number, beta: number): TensorF32; /** * @param {TensorU32} indices * @param {TensorF32} b * @param {Uint32Array} result_shape * @param {number} alpha * @returns {TensorF32} */ multiply_sparse_dense(indices: TensorU32, b: TensorF32, result_shape: Uint32Array, alpha: number): TensorF32; /** * @param {TensorU32} indices * @param {TensorF32} b * @param {Uint32Array} result_shape * @param {number} alpha * @returns {TensorF32} */ divide_sparse_dense(indices: TensorU32, b: TensorF32, result_shape: Uint32Array, alpha: number): TensorF32; /** * @param {TensorU32} indices * @param {TensorU32} b_indices * @param {TensorF32} b_values * @param {Uint32Array} result_shape * @param {number} alpha * @param {number} beta * @returns {TensorF32} */ add_sparse_sparse(indices: TensorU32, b_indices: TensorU32, b_values: TensorF32, result_shape: Uint32Array, alpha: number, beta: number): TensorF32; /** * @param {TensorU32} indices * @param {TensorU32} b_indices * @param {TensorF32} b_values * @param {Uint32Array} result_shape * @param {number} alpha * @param {number} beta * @returns {TensorF32} */ subtract_sparse_sparse(indices: TensorU32, b_indices: TensorU32, b_values: TensorF32, result_shape: Uint32Array, alpha: number, beta: number): TensorF32; /** * @param {TensorU32} indices * @param {TensorU32} b_indices * @param {TensorF32} b_values * @param {Uint32Array} result_shape * @param {number} alpha * @returns {TensorF32} */ divide_sparse_sparse(indices: TensorU32, b_indices: TensorU32, b_values: TensorF32, result_shape: Uint32Array, alpha: number): TensorF32; /** * @param {TensorU32} indices * @param {TensorU32} b_indices * @param {TensorF32} b_values * @param {Uint32Array} result_shape * @param {number} alpha * @returns {TensorF32} */ multiply_sparse_sparse(indices: TensorU32, b_indices: TensorU32, b_values: TensorF32, result_shape: Uint32Array, alpha: number): TensorF32; /** * @param {Uint32Array} shape * @param {TensorU32} indices * @param {Uint32Array} axes * @param {boolean} keep_dims * @returns {TensorF32} */ sum_sparse(shape: Uint32Array, indices: TensorU32, axes: Uint32Array, keep_dims: boolean): TensorF32; /** * @param {Uint32Array} shape * @param {TensorU32} indices * @param {Uint32Array} axes * @param {boolean} keep_dims * @returns {TensorF32} */ sum_square_sparse(shape: Uint32Array, indices: TensorU32, axes: Uint32Array, keep_dims: boolean): TensorF32; /** * @param {Uint32Array} shape * @param {TensorU32} indices * @param {Uint32Array} axes * @param {boolean} keep_dims * @returns {TensorF32} */ reduce_mean_sparse(shape: Uint32Array, indices: TensorU32, axes: Uint32Array, keep_dims: boolean): TensorF32; /** * @param {Uint32Array} shape * @param {TensorU32} indices * @param {Uint32Array} axes * @param {boolean} keep_dims * @returns {TensorF32} */ product_sparse(shape: Uint32Array, indices: TensorU32, axes: Uint32Array, keep_dims: boolean): TensorF32; /** * @param {Uint32Array} shape * @param {TensorU32} indices * @param {Uint32Array} axes * @param {boolean} keep_dims * @returns {TensorF32} */ max_sparse(shape: Uint32Array, indices: TensorU32, axes: Uint32Array, keep_dims: boolean): TensorF32; /** * @param {Uint32Array} shape * @param {TensorU32} indices * @param {Uint32Array} axes * @param {boolean} keep_dims * @returns {TensorF32} */ min_sparse(shape: Uint32Array, indices: TensorU32, axes: Uint32Array, keep_dims: boolean): TensorF32; /** * @param {Uint32Array} shape * @param {TensorU32} indices * @param {Uint32Array} axes * @param {boolean} keep_dims * @returns {TensorF32} */ reduce_mean_squared_sparse(shape: Uint32Array, indices: TensorU32, axes: Uint32Array, keep_dims: boolean): TensorF32; /** * @param {Uint32Array} shape * @param {TensorU32} indices * @param {Uint32Array} axes * @param {boolean} keep_dims * @returns {TensorF32} */ reduce_log_sum_sparse(shape: Uint32Array, indices: TensorU32, axes: Uint32Array, keep_dims: boolean): TensorF32; /** * @param {Uint32Array} shape * @param {TensorU32} indices * @param {Uint32Array} axes * @param {boolean} keep_dims * @returns {TensorF32} */ reduce_log_sum_exp_sparse(shape: Uint32Array, indices: TensorU32, axes: Uint32Array, keep_dims: boolean): TensorF32; } /** */ export class TensorF64 { static __wrap(ptr: any): any; /** * @param {Uint32Array} shape * @param {Float64Array} values * @returns {TensorF64} */ static create(shape: Uint32Array, values: Float64Array): TensorF64; /** * @param {Uint32Array} shape * @param {number} value * @returns {TensorF64} */ static create_constant(shape: Uint32Array, value: number): TensorF64; __destroy_into_raw(): number | undefined; ptr: number | undefined; free(): void; /** * @returns {Float64Array} */ get_vals(): Float64Array; /** * @returns {Uint32Array} */ get_shape(): Uint32Array; /** * @returns {TensorF64} */ exp(): TensorF64; /** * @returns {TensorF64} */ log(): TensorF64; /** * @returns {TensorF64} */ sqrt(): TensorF64; /** * @returns {TensorF64} */ sin(): TensorF64; /** * @returns {TensorF64} */ cos(): TensorF64; /** * @returns {TensorF64} */ tan(): TensorF64; /** * @returns {TensorF64} */ asin(): TensorF64; /** * @returns {TensorF64} */ acos(): TensorF64; /** * @returns {TensorF64} */ atan(): TensorF64; /** * @returns {TensorF64} */ sinh(): TensorF64; /** * @returns {TensorF64} */ cosh(): TensorF64; /** * @returns {TensorF64} */ tanh(): TensorF64; /** * @returns {TensorF64} */ asinh(): TensorF64; /** * @returns {TensorF64} */ acosh(): TensorF64; /** * @returns {TensorF64} */ atanh(): TensorF64; /** * @returns {TensorF64} */ sigmoid(): TensorF64; /** * @returns {TensorF64} */ floor(): TensorF64; /** * @returns {TensorF64} */ ceil(): TensorF64; /** * @returns {TensorF64} */ round(): TensorF64; /** * @param {number} power * @param {number} factor * @returns {TensorF64} */ power_scalar(power: number, factor: number): TensorF64; /** * @param {number} alpha * @param {number} beta * @returns {TensorF64} */ hard_sigmoid(alpha: number, beta: number): TensorF64; /** * @returns {TensorF64} */ abs(): TensorF64; /** * @returns {TensorF64} */ sign(): TensorF64; /** * @returns {TensorF64} */ negate(): TensorF64; /** * @param {number} factor * @param {number} add * @returns {TensorF64} */ add_multiply_scalar(factor: number, add: number): TensorF64; /** * @param {number} min * @param {number} max * @returns {TensorF64} */ clip(min: number, max: number): TensorF64; /** * @param {number} min * @returns {TensorF64} */ clip_min(min: number): TensorF64; /** * @param {number} max * @returns {TensorF64} */ clip_max(max: number): TensorF64; /** * @param {TensorF64} other * @returns {TensorF64} */ power(other: TensorF64): TensorF64; /** * @param {TensorF64} other * @returns {TensorF64} */ bce(other: TensorF64): TensorF64; /** * @param {TensorF64} other * @returns {TensorF64} */ bce_back(other: TensorF64): TensorF64; /** * @param {TensorF64} other * @param {number} alpha * @param {number} beta * @returns {TensorF64} */ addition(other: TensorF64, alpha: number, beta: number): TensorF64; /** * @param {TensorF64} other * @param {number} alpha * @param {number} beta * @returns {TensorF64} */ subtraction(other: TensorF64, alpha: number, beta: number): TensorF64; /** * @param {TensorF64} other * @param {number} alpha * @returns {TensorF64} */ multiply(other: TensorF64, alpha: number): TensorF64; /** * @param {TensorF64} other * @param {number} alpha * @returns {TensorF64} */ divide(other: TensorF64, alpha: number): TensorF64; /** * @param {number} min * @param {number} max * @param {TensorF64} grad * @returns {TensorF64} */ clip_backward(min: number, max: number, grad: TensorF64): TensorF64; /** * @param {number} min * @param {TensorF64} grad * @returns {TensorF64} */ clip_min_backward(min: number, grad: TensorF64): TensorF64; /** * @param {number} max * @param {TensorF64} grad * @returns {TensorF64} */ clip_max_backward(max: number, grad: TensorF64): TensorF64; /** * @param {Uint32Array} axes * @param {boolean} keep_dims * @returns {TensorF64} */ sum(axes: Uint32Array, keep_dims: boolean): TensorF64; /** * @param {Uint32Array} axes * @param {boolean} keep_dims * @returns {TensorF64} */ sum_square(axes: Uint32Array, keep_dims: boolean): TensorF64; /** * @param {Uint32Array} axes * @param {boolean} keep_dims * @returns {TensorF64} */ product(axes: Uint32Array, keep_dims: boolean): TensorF64; /** * @param {Uint32Array} axes * @param {boolean} keep_dims * @returns {TensorF64} */ max(axes: Uint32Array, keep_dims: boolean): TensorF64; /** * @param {Uint32Array} axes * @param {boolean} keep_dims * @returns {TensorF64} */ min(axes: Uint32Array, keep_dims: boolean): TensorF64; /** * @param {Uint32Array} axes * @param {boolean} keep_dims * @returns {TensorF64} */ reduce_mean(axes: Uint32Array, keep_dims: boolean): TensorF64; /** * @param {Uint32Array} axes * @param {boolean} keep_dims * @returns {TensorF64} */ reduce_mean_square(axes: Uint32Array, keep_dims: boolean): TensorF64; /** * @param {Uint32Array} axes * @param {boolean} keep_dims * @returns {TensorF64} */ reduce_log_sum(axes: Uint32Array, keep_dims: boolean): TensorF64; /** * @param {Uint32Array} axes * @param {boolean} keep_dims * @returns {TensorF64} */ reduce_log_sum_exp(axes: Uint32Array, keep_dims: boolean): TensorF64; /** * @param {TensorF64} kernel * @param {Uint32Array} dilations * @param {number} group * @param {Uint32Array} pads * @param {Uint32Array} strides * @param {number} activation * @returns {TensorF64} */ conv(kernel: TensorF64, dilations: Uint32Array, group: number, pads: Uint32Array, strides: Uint32Array, activation: number): TensorF64; /** * @param {TensorF64} kernel * @param {TensorF64} bias * @param {Uint32Array} dilations * @param {number} group * @param {Uint32Array} pads * @param {Uint32Array} strides * @param {number} activation * @returns {TensorF64} */ conv_with_bias(kernel: TensorF64, bias: TensorF64, dilations: Uint32Array, group: number, pads: Uint32Array, strides: Uint32Array, activation: number): TensorF64; /** * @param {TensorF64} kernel * @param {Uint32Array} dilations * @param {number} group * @param {Uint32Array} pads * @param {Uint32Array} strides * @returns {TensorF64} */ conv_transpose(kernel: TensorF64, dilations: Uint32Array, group: number, pads: Uint32Array, strides: Uint32Array): TensorF64; /** * @param {Uint32Array} kernel_shape * @param {Uint32Array} pads * @param {Uint32Array} strides * @param {boolean} include_pad * @returns {TensorF64} */ average_pool(kernel_shape: Uint32Array, pads: Uint32Array, strides: Uint32Array, include_pad: boolean): TensorF64; /** * @param {Uint32Array} pads * @param {number} mode * @param {number} value * @returns {TensorF64} */ pad(pads: Uint32Array, mode: number, value: number): TensorF64; /** * @param {Float32Array} scales * @returns {TensorF64} */ upsample(scales: Float32Array): TensorF64; /** * @param {TensorF64} mean * @param {TensorF64} variance * @param {number} epsilon * @param {TensorF64} scale * @param {TensorF64} bias * @returns {TensorF64} */ normalize(mean: TensorF64, variance: TensorF64, epsilon: number, scale: TensorF64, bias: TensorF64): TensorF64; /** * @param {TensorF64} other * @returns {TensorF64} */ matmul(other: TensorF64): TensorF64; /** * @param {TensorF64} other * @param {boolean} a_transpose * @param {boolean} b_transpose * @param {number} alpha * @returns {TensorF64} */ gemm(other: TensorF64, a_transpose: boolean, b_transpose: boolean, alpha: number): TensorF64; /** * @param {TensorF64} other * @param {boolean} a_transpose * @param {boolean} b_transpose * @param {number} alpha * @param {TensorF64} c * @param {number} beta * @returns {TensorF64} */ gemm_with_c(other: TensorF64, a_transpose: boolean, b_transpose: boolean, alpha: number, c: TensorF64, beta: number): TensorF64; /** * @param {TensorF64} values * @param {Uint32Array} starts * @returns {TensorF64} */ set_values(values: TensorF64, starts: Uint32Array): TensorF64; /** * @param {Uint32Array} shape * @returns {TensorF64} */ reshape(shape: Uint32Array): TensorF64; /** * @param {TensorF64} other * @param {number} axes * @returns {TensorF64} */ concat(other: TensorF64, axes: number): TensorF64; /** * @param {Uint32Array} permutation * @returns {TensorF64} */ transpose(permutation: Uint32Array): TensorF64; /** * @param {Uint32Array} repeats * @returns {TensorF64} */ repeat(repeats: Uint32Array): TensorF64; /** * @param {Uint32Array} shape * @returns {TensorF64} */ expand(shape: Uint32Array): TensorF64; /** * @returns {TensorF64} */ copy(): TensorF64; /** * @param {number} axis * @param {Uint32Array} indices * @param {Uint32Array} indice_shape * @returns {TensorF64} */ gather(axis: number, indices: Uint32Array, indice_shape: Uint32Array): TensorF64; /** * @param {Uint32Array} starts * @param {Uint32Array} ends * @param {Uint32Array} axis * @param {Int32Array} steps * @returns {TensorF64} */ slice(starts: Uint32Array, ends: Uint32Array, axis: Uint32Array, steps: Int32Array): TensorF64; /** * @param {TensorU32} indices * @param {TensorF64} b * @param {number} m * @returns {TensorF64} */ matmul_sparse_dense(indices: TensorU32, b: TensorF64, m: number): TensorF64; /** * @param {TensorU32} indices * @param {TensorF64} b * @param {Uint32Array} result_shape * @param {number} alpha * @param {number} beta * @returns {TensorF64} */ add_sparse_dense(indices: TensorU32, b: TensorF64, result_shape: Uint32Array, alpha: number, beta: number): TensorF64; /** * @param {TensorU32} indices * @param {TensorF64} b * @param {Uint32Array} result_shape * @param {number} alpha * @param {number} beta * @returns {TensorF64} */ subtract_sparse_dense(indices: TensorU32, b: TensorF64, result_shape: Uint32Array, alpha: number, beta: number): TensorF64; /** * @param {TensorU32} indices * @param {TensorF64} b * @param {Uint32Array} result_shape * @param {number} alpha * @returns {TensorF64} */ multiply_sparse_dense(indices: TensorU32, b: TensorF64, result_shape: Uint32Array, alpha: number): TensorF64; /** * @param {TensorU32} indices * @param {TensorF64} b * @param {Uint32Array} result_shape * @param {number} alpha * @returns {TensorF64} */ divide_sparse_dense(indices: TensorU32, b: TensorF64, result_shape: Uint32Array, alpha: number): TensorF64; /** * @param {TensorU32} indices * @param {TensorU32} b_indices * @param {TensorF64} b_values * @param {Uint32Array} result_shape * @param {number} alpha * @param {number} beta * @returns {TensorF64} */ add_sparse_sparse(indices: TensorU32, b_indices: TensorU32, b_values: TensorF64, result_shape: Uint32Array, alpha: number, beta: number): TensorF64; /** * @param {TensorU32} indices * @param {TensorU32} b_indices * @param {TensorF64} b_values * @param {Uint32Array} result_shape * @param {number} alpha * @param {number} beta * @returns {TensorF64} */ subtract_sparse_sparse(indices: TensorU32, b_indices: TensorU32, b_values: TensorF64, result_shape: Uint32Array, alpha: number, beta: number): TensorF64; /** * @param {TensorU32} indices * @param {TensorU32} b_indices * @param {TensorF64} b_values * @param {Uint32Array} result_shape * @param {number} alpha * @returns {TensorF64} */ divide_sparse_sparse(indices: TensorU32, b_indices: TensorU32, b_values: TensorF64, result_shape: Uint32Array, alpha: number): TensorF64; /** * @param {TensorU32} indices * @param {TensorU32} b_indices * @param {TensorF64} b_values * @param {Uint32Array} result_shape * @param {number} alpha * @returns {TensorF64} */ multiply_sparse_sparse(indices: TensorU32, b_indices: TensorU32, b_values: TensorF64, result_shape: Uint32Array, alpha: number): TensorF64; /** * @param {Uint32Array} shape * @param {TensorU32} indices * @param {Uint32Array} axes * @param {boolean} keep_dims * @returns {TensorF64} */ sum_sparse(shape: Uint32Array, indices: TensorU32, axes: Uint32Array, keep_dims: boolean): TensorF64; /** * @param {Uint32Array} shape * @param {TensorU32} indices * @param {Uint32Array} axes * @param {boolean} keep_dims * @returns {TensorF64} */ sum_square_sparse(shape: Uint32Array, indices: TensorU32, axes: Uint32Array, keep_dims: boolean): TensorF64; /** * @param {Uint32Array} shape * @param {TensorU32} indices * @param {Uint32Array} axes * @param {boolean} keep_dims * @returns {TensorF64} */ reduce_mean_sparse(shape: Uint32Array, indices: TensorU32, axes: Uint32Array, keep_dims: boolean): TensorF64; /** * @param {Uint32Array} shape * @param {TensorU32} indices * @param {Uint32Array} axes * @param {boolean} keep_dims * @returns {TensorF64} */ product_sparse(shape: Uint32Array, indices: TensorU32, axes: Uint32Array, keep_dims: boolean): TensorF64; /** * @param {Uint32Array} shape * @param {TensorU32} indices * @param {Uint32Array} axes * @param {boolean} keep_dims * @returns {TensorF64} */ max_sparse(shape: Uint32Array, indices: TensorU32, axes: Uint32Array, keep_dims: boolean): TensorF64; /** * @param {Uint32Array} shape * @param {TensorU32} indices * @param {Uint32Array} axes * @param {boolean} keep_dims * @returns {TensorF64} */ min_sparse(shape: Uint32Array, indices: TensorU32, axes: Uint32Array, keep_dims: boolean): TensorF64; /** * @param {Uint32Array} shape * @param {TensorU32} indices * @param {Uint32Array} axes * @param {boolean} keep_dims * @returns {TensorF64} */ reduce_mean_squared_sparse(shape: Uint32Array, indices: TensorU32, axes: Uint32Array, keep_dims: boolean): TensorF64; /** * @param {Uint32Array} shape * @param {TensorU32} indices * @param {Uint32Array} axes * @param {boolean} keep_dims * @returns {TensorF64} */ reduce_log_sum_sparse(shape: Uint32Array, indices: TensorU32, axes: Uint32Array, keep_dims: boolean): TensorF64; /** * @param {Uint32Array} shape * @param {TensorU32} indices * @param {Uint32Array} axes * @param {boolean} keep_dims * @returns {TensorF64} */ reduce_log_sum_exp_sparse(shape: Uint32Array, indices: TensorU32, axes: Uint32Array, keep_dims: boolean): TensorF64; } /** */ export class TensorI16 { static __wrap(ptr: any): any; /** * @param {Uint32Array} shape * @param {Int16Array} values * @returns {TensorI16} */ static create(shape: Uint32Array, values: Int16Array): TensorI16; /** * @param {Uint32Array} shape * @param {number} value * @returns {TensorI16} */ static create_constant(shape: Uint32Array, value: number): TensorI16; __destroy_into_raw(): number | undefined; ptr: number | undefined; free(): void; /** * @returns {Int16Array} */ get_vals(): Int16Array; /** * @returns {Uint32Array} */ get_shape(): Uint32Array; /** * @param {number} power * @param {number} factor * @returns {TensorI16} */ power_scalar(power: number, factor: number): TensorI16; /** * @returns {TensorI16} */ abs(): TensorI16; /** * @returns {TensorI16} */ sign(): TensorI16; /** * @returns {TensorI16} */ negate(): TensorI16; /** * @param {number} factor * @param {number} add * @returns {TensorI16} */ add_multiply_scalar(factor: number, add: number): TensorI16; /** * @param {number} min * @param {number} max * @returns {TensorI16} */ clip(min: number, max: number): TensorI16; /** * @param {number} min * @returns {TensorI16} */ clip_min(min: number): TensorI16; /** * @param {number} max * @returns {TensorI16} */ clip_max(max: number): TensorI16; /** * @param {TensorI16} other * @returns {TensorI16} */ power(other: TensorI16): TensorI16; /** * @param {TensorI16} other * @param {number} alpha * @param {number} beta * @returns {TensorI16} */ addition(other: TensorI16, alpha: number, beta: number): TensorI16; /** * @param {TensorI16} other * @param {number} alpha * @param {number} beta * @returns {TensorI16} */ subtraction(other: TensorI16, alpha: number, beta: number): TensorI16; /** * @param {TensorI16} other * @param {number} alpha * @returns {TensorI16} */ multiply(other: TensorI16, alpha: number): TensorI16; /** * @param {TensorI16} other * @param {number} alpha * @returns {TensorI16} */ divide(other: TensorI16, alpha: number): TensorI16; /** * @param {number} min * @param {number} max * @param {TensorI16} grad * @returns {TensorI16} */ clip_backward(min: number, max: number, grad: TensorI16): TensorI16; /** * @param {number} min * @param {TensorI16} grad * @returns {TensorI16} */ clip_min_backward(min: number, grad: TensorI16): TensorI16; /** * @param {number} max * @param {TensorI16} grad * @returns {TensorI16} */ clip_max_backward(max: number, grad: TensorI16): TensorI16; /** * @param {Uint32Array} axes * @param {boolean} keep_dims * @returns {TensorI16} */ sum(axes: Uint32Array, keep_dims: boolean): TensorI16; /** * @param {Uint32Array} axes * @param {boolean} keep_dims * @returns {TensorI16} */ sum_square(axes: Uint32Array, keep_dims: boolean): TensorI16; /** * @param {Uint32Array} axes * @param {boolean} keep_dims * @returns {TensorI16} */ product(axes: Uint32Array, keep_dims: boolean): TensorI16; /** * @param {Uint32Array} axes * @param {boolean} keep_dims * @returns {TensorI16} */ max(axes: Uint32Array, keep_dims: boolean): TensorI16; /** * @param {Uint32Array} axes * @param {boolean} keep_dims * @returns {TensorI16} */ min(axes: Uint32Array, keep_dims: boolean): TensorI16; /** * @param {Uint32Array} axes * @param {boolean} keep_dims * @returns {TensorI16} */ reduce_mean(axes: Uint32Array, keep_dims: boolean): TensorI16; /** * @param {Uint32Array} axes * @param {boolean} keep_dims * @returns {TensorI16} */ reduce_mean_square(axes: Uint32Array, keep_dims: boolean): TensorI16; /** * @param {TensorI16} kernel * @param {Uint32Array} dilations * @param {number} group * @param {Uint32Array} pads * @param {Uint32Array} strides * @param {number} activation * @returns {TensorI16} */ conv(kernel: TensorI16, dilations: Uint32Array, group: number, pads: Uint32Array, strides: Uint32Array, activation: number): TensorI16; /** * @param {TensorI16} kernel * @param {TensorI16} bias * @param {Uint32Array} dilations * @param {number} group * @param {Uint32Array} pads * @param {Uint32Array} strides * @param {number} activation * @returns {TensorI16} */ conv_with_bias(kernel: TensorI16, bias: TensorI16, dilations: Uint32Array, group: number, pads: Uint32Array, strides: Uint32Array, activation: number): TensorI16; /** * @param {TensorI16} kernel * @param {Uint32Array} dilations * @param {number} group * @param {Uint32Array} pads * @param {Uint32Array} strides * @returns {TensorI16} */ conv_transpose(kernel: TensorI16, dilations: Uint32Array, group: number, pads: Uint32Array, strides: Uint32Array): TensorI16; /** * @param {Uint32Array} kernel_shape * @param {Uint32Array} pads * @param {Uint32Array} strides * @param {boolean} include_pad * @returns {TensorI16} */ average_pool(kernel_shape: Uint32Array, pads: Uint32Array, strides: Uint32Array, include_pad: boolean): TensorI16; /** * @param {Uint32Array} pads * @param {number} mode * @param {number} value * @returns {TensorI16} */ pad(pads: Uint32Array, mode: number, value: number): TensorI16; /** * @param {Float32Array} scales * @returns {TensorI16} */ upsample(scales: Float32Array): TensorI16; /** * @param {TensorI16} other * @returns {TensorI16} */ matmul(other: TensorI16): TensorI16; /** * @param {TensorI16} other * @param {boolean} a_transpose * @param {boolean} b_transpose * @param {number} alpha * @returns {TensorI16} */ gemm(other: TensorI16, a_transpose: boolean, b_transpose: boolean, alpha: number): TensorI16; /** * @param {TensorI16} other * @param {boolean} a_transpose * @param {boolean} b_transpose * @param {number} alpha * @param {TensorI16} c * @param {number} beta * @returns {TensorI16} */ gemm_with_c(other: TensorI16, a_transpose: boolean, b_transpose: boolean, alpha: number, c: TensorI16, beta: number): TensorI16; /** * @param {TensorI16} values * @param {Uint32Array} starts * @returns {TensorI16} */ set_values(values: TensorI16, starts: Uint32Array): TensorI16; /** * @param {Uint32Array} shape * @returns {TensorI16} */ reshape(shape: Uint32Array): TensorI16; /** * @param {TensorI16} other * @param {number} axes * @returns {TensorI16} */ concat(other: TensorI16, axes: number): TensorI16; /** * @param {Uint32Array} permutation * @returns {TensorI16} */ transpose(permutation: Uint32Array): TensorI16; /** * @param {Uint32Array} repeats * @returns {TensorI16} */ repeat(repeats: Uint32Array): TensorI16; /** * @param {Uint32Array} shape * @returns {TensorI16} */ expand(shape: Uint32Array): TensorI16; /** * @returns {TensorI16} */ copy(): TensorI16; /** * @param {number} axis * @param {Uint32Array} indices * @param {Uint32Array} indice_shape * @returns {TensorI16} */ gather(axis: number, indices: Uint32Array, indice_shape: Uint32Array): TensorI16; /** * @param {Uint32Array} starts * @param {Uint32Array} ends * @param {Uint32Array} axis * @param {Int32Array} steps * @returns {TensorI16} */ slice(starts: Uint32Array, ends: Uint32Array, axis: Uint32Array, steps: Int32Array): TensorI16; /** * @param {TensorU32} indices * @param {TensorI16} b * @param {number} m * @returns {TensorI16} */ matmul_sparse_dense(indices: TensorU32, b: TensorI16, m: number): TensorI16; /** * @param {TensorU32} indices * @param {TensorI16} b * @param {Uint32Array} result_shape * @param {number} alpha * @param {number} beta * @returns {TensorI16} */ add_sparse_dense(indices: TensorU32, b: TensorI16, result_shape: Uint32Array, alpha: number, beta: number): TensorI16; /** * @param {TensorU32} indices * @param {TensorI16} b * @param {Uint32Array} result_shape * @param {number} alpha * @param {number} beta * @returns {TensorI16} */ subtract_sparse_dense(indices: TensorU32, b: TensorI16, result_shape: Uint32Array, alpha: number, beta: number): TensorI16; /** * @param {TensorU32} indices * @param {TensorI16} b * @param {Uint32Array} result_shape * @param {number} alpha * @returns {TensorI16} */ multiply_sparse_dense(indices: TensorU32, b: TensorI16, result_shape: Uint32Array, alpha: number): TensorI16; /** * @param {TensorU32} indices * @param {TensorI16} b * @param {Uint32Array} result_shape * @param {number} alpha * @returns {TensorI16} */ divide_sparse_dense(indices: TensorU32, b: TensorI16, result_shape: Uint32Array, alpha: number): TensorI16; /** * @param {TensorU32} indices * @param {TensorU32} b_indices * @param {TensorI16} b_values * @param {Uint32Array} result_shape * @param {number} alpha * @param {number} beta * @returns {TensorI16} */ add_sparse_sparse(indices: TensorU32, b_indices: TensorU32, b_values: TensorI16, result_shape: Uint32Array, alpha: number, beta: number): TensorI16; /** * @param {TensorU32} indices * @param {TensorU32} b_indices * @param {TensorI16} b_values * @param {Uint32Array} result_shape * @param {number} alpha * @param {number} beta * @returns {TensorI16} */ subtract_sparse_sparse(indices: TensorU32, b_indices: TensorU32, b_values: TensorI16, result_shape: Uint32Array, alpha: number, beta: number): TensorI16; /** * @param {TensorU32} indices * @param {TensorU32} b_indices * @param {TensorI16} b_values * @param {Uint32Array} result_shape * @param {number} alpha * @returns {TensorI16} */ divide_sparse_sparse(indices: TensorU32, b_indices: TensorU32, b_values: TensorI16, result_shape: Uint32Array, alpha: number): TensorI16; /** * @param {TensorU32} indices * @param {TensorU32} b_indices * @param {TensorI16} b_values * @param {Uint32Array} result_shape * @param {number} alpha * @returns {TensorI16} */ multiply_sparse_sparse(indices: TensorU32, b_indices: TensorU32, b_values: TensorI16, result_shape: Uint32Array, alpha: number): TensorI16; /** * @param {Uint32Array} shape * @param {TensorU32} indices * @param {Uint32Array} axes * @param {boolean} keep_dims * @returns {TensorI16} */ sum_sparse(shape: Uint32Array, indices: TensorU32, axes: Uint32Array, keep_dims: boolean): TensorI16; /** * @param {Uint32Array} shape * @param {TensorU32} indices * @param {Uint32Array} axes * @param {boolean} keep_dims * @returns {TensorI16} */ sum_square_sparse(shape: Uint32Array, indices: TensorU32, axes: Uint32Array, keep_dims: boolean): TensorI16; /** * @param {Uint32Array} shape * @param {TensorU32} indices * @param {Uint32Array} axes * @param {boolean} keep_dims * @returns {TensorI16} */ reduce_mean_sparse(shape: Uint32Array, indices: TensorU32, axes: Uint32Array, keep_dims: boolean): TensorI16; /** * @param {Uint32Array} shape * @param {TensorU32} indices * @param {Uint32Array} axes * @param {boolean} keep_dims * @returns {TensorI16} */ product_sparse(shape: Uint32Array, indices: TensorU32, axes: Uint32Array, keep_dims: boolean): TensorI16; /** * @param {Uint32Array} shape * @param {TensorU32} indices * @param {Uint32Array} axes * @param {boolean} keep_dims * @returns {TensorI16} */ max_sparse(shape: Uint32Array, indices: TensorU32, axes: Uint32Array, keep_dims: boolean): TensorI16; /** * @param {Uint32Array} shape * @param {TensorU32} indices * @param {Uint32Array} axes * @param {boolean} keep_dims * @returns {TensorI16} */ min_sparse(shape: Uint32Array, indices: TensorU32, axes: Uint32Array, keep_dims: boolean): TensorI16; /** * @param {Uint32Array} shape * @param {TensorU32} indices * @param {Uint32Array} axes * @param {boolean} keep_dims * @returns {TensorI16} */ reduce_mean_squared_sparse(shape: Uint32Array, indices: TensorU32, axes: Uint32Array, keep_dims: boolean): TensorI16; } /** */ export class TensorI32 { static __wrap(ptr: any): any; /** * @param {Uint32Array} shape * @param {Int32Array} values * @returns {TensorI32} */ static create(shape: Uint32Array, values: Int32Array): TensorI32; /** * @param {Uint32Array} shape * @param {number} value * @returns {TensorI32} */ static create_constant(shape: Uint32Array, value: number): TensorI32; __destroy_into_raw(): number | undefined; ptr: number | undefined; free(): void; /** * @returns {Int32Array} */ get_vals(): Int32Array; /** * @returns {Uint32Array} */ get_shape(): Uint32Array; /** * @param {number} power * @param {number} factor * @returns {TensorI32} */ power_scalar(power: number, factor: number): TensorI32; /** * @returns {TensorI32} */ abs(): TensorI32; /** * @returns {TensorI32} */ sign(): TensorI32; /** * @returns {TensorI32} */ negate(): TensorI32; /** * @param {number} factor * @param {number} add * @returns {TensorI32} */ add_multiply_scalar(factor: number, add: number): TensorI32; /** * @param {number} min * @param {number} max * @returns {TensorI32} */ clip(min: number, max: number): TensorI32; /** * @param {number} min * @returns {TensorI32} */ clip_min(min: number): TensorI32; /** * @param {number} max * @returns {TensorI32} */ clip_max(max: number): TensorI32; /** * @param {TensorI32} other * @returns {TensorI32} */ power(other: TensorI32): TensorI32; /** * @param {TensorI32} other * @param {number} alpha * @param {number} beta * @returns {TensorI32} */ addition(other: TensorI32, alpha: number, beta: number): TensorI32; /** * @param {TensorI32} other * @param {number} alpha * @param {number} beta * @returns {TensorI32} */ subtraction(other: TensorI32, alpha: number, beta: number): TensorI32; /** * @param {TensorI32} other * @param {number} alpha * @returns {TensorI32} */ multiply(other: TensorI32, alpha: number): TensorI32; /** * @param {TensorI32} other * @param {number} alpha * @returns {TensorI32} */ divide(other: TensorI32, alpha: number): TensorI32; /** * @param {number} min * @param {number} max * @param {TensorI32} grad * @returns {TensorI32} */ clip_backward(min: number, max: number, grad: TensorI32): TensorI32; /** * @param {number} min * @param {TensorI32} grad * @returns {TensorI32} */ clip_min_backward(min: number, grad: TensorI32): TensorI32; /** * @param {number} max * @param {TensorI32} grad * @returns {TensorI32} */ clip_max_backward(max: number, grad: TensorI32): TensorI32; /** * @param {Uint32Array} axes * @param {boolean} keep_dims * @returns {TensorI32} */ sum(axes: Uint32Array, keep_dims: boolean): TensorI32; /** * @param {Uint32Array} axes * @param {boolean} keep_dims * @returns {TensorI32} */ sum_square(axes: Uint32Array, keep_dims: boolean): TensorI32; /** * @param {Uint32Array} axes * @param {boolean} keep_dims * @returns {TensorI32} */ product(axes: Uint32Array, keep_dims: boolean): TensorI32; /** * @param {Uint32Array} axes * @param {boolean} keep_dims * @returns {TensorI32} */ max(axes: Uint32Array, keep_dims: boolean): TensorI32; /** * @param {Uint32Array} axes * @param {boolean} keep_dims * @returns {TensorI32} */ min(axes: Uint32Array, keep_dims: boolean): TensorI32; /** * @param {Uint32Array} axes * @param {boolean} keep_dims * @returns {TensorI32} */ reduce_mean(axes: Uint32Array, keep_dims: boolean): TensorI32; /** * @param {Uint32Array} axes * @param {boolean} keep_dims * @returns {TensorI32} */ reduce_mean_square(axes: Uint32Array, keep_dims: boolean): TensorI32; /** * @param {TensorI32} kernel * @param {Uint32Array} dilations * @param {number} group * @param {Uint32Array} pads * @param {Uint32Array} strides * @param {number} activation * @returns {TensorI32} */ conv(kernel: TensorI32, dilations: Uint32Array, group: number, pads: Uint32Array, strides: Uint32Array, activation: number): TensorI32; /** * @param {TensorI32} kernel * @param {TensorI32} bias * @param {Uint32Array} dilations * @param {number} group * @param {Uint32Array} pads * @param {Uint32Array} strides * @param {number} activation * @returns {TensorI32} */ conv_with_bias(kernel: TensorI32, bias: TensorI32, dilations: Uint32Array, group: number, pads: Uint32Array, strides: Uint32Array, activation: number): TensorI32; /** * @param {TensorI32} kernel * @param {Uint32Array} dilations * @param {number} group * @param {Uint32Array} pads * @param {Uint32Array} strides * @returns {TensorI32} */ conv_transpose(kernel: TensorI32, dilations: Uint32Array, group: number, pads: Uint32Array, strides: Uint32Array): TensorI32; /** * @param {Uint32Array} kernel_shape * @param {Uint32Array} pads * @param {Uint32Array} strides * @param {boolean} include_pad * @returns {TensorI32} */ average_pool(kernel_shape: Uint32Array, pads: Uint32Array, strides: Uint32Array, include_pad: boolean): TensorI32; /** * @param {Uint32Arra