@hoff97/tensor-js
Version:
PyTorch like deep learning inferrence library
1,714 lines • 111 kB
TypeScript
/**
*/
export class TensorF32 {
static __wrap(ptr: any): any;
/**
* @param {Uint32Array} shape
* @param {Float32Array} values
* @returns {TensorF32}
*/
static create(shape: Uint32Array, values: Float32Array): TensorF32;
/**
* @param {Uint32Array} shape
* @param {number} value
* @returns {TensorF32}
*/
static create_constant(shape: Uint32Array, value: number): TensorF32;
__destroy_into_raw(): number | undefined;
ptr: number | undefined;
free(): void;
/**
* @returns {Float32Array}
*/
get_vals(): Float32Array;
/**
* @returns {Uint32Array}
*/
get_shape(): Uint32Array;
/**
* @returns {TensorF32}
*/
exp(): TensorF32;
/**
* @returns {TensorF32}
*/
log(): TensorF32;
/**
* @returns {TensorF32}
*/
sqrt(): TensorF32;
/**
* @returns {TensorF32}
*/
sin(): TensorF32;
/**
* @returns {TensorF32}
*/
cos(): TensorF32;
/**
* @returns {TensorF32}
*/
tan(): TensorF32;
/**
* @returns {TensorF32}
*/
asin(): TensorF32;
/**
* @returns {TensorF32}
*/
acos(): TensorF32;
/**
* @returns {TensorF32}
*/
atan(): TensorF32;
/**
* @returns {TensorF32}
*/
sinh(): TensorF32;
/**
* @returns {TensorF32}
*/
cosh(): TensorF32;
/**
* @returns {TensorF32}
*/
tanh(): TensorF32;
/**
* @returns {TensorF32}
*/
asinh(): TensorF32;
/**
* @returns {TensorF32}
*/
acosh(): TensorF32;
/**
* @returns {TensorF32}
*/
atanh(): TensorF32;
/**
* @returns {TensorF32}
*/
sigmoid(): TensorF32;
/**
* @returns {TensorF32}
*/
floor(): TensorF32;
/**
* @returns {TensorF32}
*/
ceil(): TensorF32;
/**
* @returns {TensorF32}
*/
round(): TensorF32;
/**
* @param {number} power
* @param {number} factor
* @returns {TensorF32}
*/
power_scalar(power: number, factor: number): TensorF32;
/**
* @param {number} alpha
* @param {number} beta
* @returns {TensorF32}
*/
hard_sigmoid(alpha: number, beta: number): TensorF32;
/**
* @returns {TensorF32}
*/
abs(): TensorF32;
/**
* @returns {TensorF32}
*/
sign(): TensorF32;
/**
* @returns {TensorF32}
*/
negate(): TensorF32;
/**
* @param {number} factor
* @param {number} add
* @returns {TensorF32}
*/
add_multiply_scalar(factor: number, add: number): TensorF32;
/**
* @param {number} min
* @param {number} max
* @returns {TensorF32}
*/
clip(min: number, max: number): TensorF32;
/**
* @param {number} min
* @returns {TensorF32}
*/
clip_min(min: number): TensorF32;
/**
* @param {number} max
* @returns {TensorF32}
*/
clip_max(max: number): TensorF32;
/**
* @param {TensorF32} other
* @returns {TensorF32}
*/
power(other: TensorF32): TensorF32;
/**
* @param {TensorF32} other
* @returns {TensorF32}
*/
bce(other: TensorF32): TensorF32;
/**
* @param {TensorF32} other
* @returns {TensorF32}
*/
bce_back(other: TensorF32): TensorF32;
/**
* @param {TensorF32} other
* @param {number} alpha
* @param {number} beta
* @returns {TensorF32}
*/
addition(other: TensorF32, alpha: number, beta: number): TensorF32;
/**
* @param {TensorF32} other
* @param {number} alpha
* @param {number} beta
* @returns {TensorF32}
*/
subtraction(other: TensorF32, alpha: number, beta: number): TensorF32;
/**
* @param {TensorF32} other
* @param {number} alpha
* @returns {TensorF32}
*/
multiply(other: TensorF32, alpha: number): TensorF32;
/**
* @param {TensorF32} other
* @param {number} alpha
* @returns {TensorF32}
*/
divide(other: TensorF32, alpha: number): TensorF32;
/**
* @param {number} min
* @param {number} max
* @param {TensorF32} grad
* @returns {TensorF32}
*/
clip_backward(min: number, max: number, grad: TensorF32): TensorF32;
/**
* @param {number} min
* @param {TensorF32} grad
* @returns {TensorF32}
*/
clip_min_backward(min: number, grad: TensorF32): TensorF32;
/**
* @param {number} max
* @param {TensorF32} grad
* @returns {TensorF32}
*/
clip_max_backward(max: number, grad: TensorF32): TensorF32;
/**
* @param {Uint32Array} axes
* @param {boolean} keep_dims
* @returns {TensorF32}
*/
sum(axes: Uint32Array, keep_dims: boolean): TensorF32;
/**
* @param {Uint32Array} axes
* @param {boolean} keep_dims
* @returns {TensorF32}
*/
sum_square(axes: Uint32Array, keep_dims: boolean): TensorF32;
/**
* @param {Uint32Array} axes
* @param {boolean} keep_dims
* @returns {TensorF32}
*/
product(axes: Uint32Array, keep_dims: boolean): TensorF32;
/**
* @param {Uint32Array} axes
* @param {boolean} keep_dims
* @returns {TensorF32}
*/
max(axes: Uint32Array, keep_dims: boolean): TensorF32;
/**
* @param {Uint32Array} axes
* @param {boolean} keep_dims
* @returns {TensorF32}
*/
min(axes: Uint32Array, keep_dims: boolean): TensorF32;
/**
* @param {Uint32Array} axes
* @param {boolean} keep_dims
* @returns {TensorF32}
*/
reduce_mean(axes: Uint32Array, keep_dims: boolean): TensorF32;
/**
* @param {Uint32Array} axes
* @param {boolean} keep_dims
* @returns {TensorF32}
*/
reduce_mean_square(axes: Uint32Array, keep_dims: boolean): TensorF32;
/**
* @param {Uint32Array} axes
* @param {boolean} keep_dims
* @returns {TensorF32}
*/
reduce_log_sum(axes: Uint32Array, keep_dims: boolean): TensorF32;
/**
* @param {Uint32Array} axes
* @param {boolean} keep_dims
* @returns {TensorF32}
*/
reduce_log_sum_exp(axes: Uint32Array, keep_dims: boolean): TensorF32;
/**
* @param {TensorF32} kernel
* @param {Uint32Array} dilations
* @param {number} group
* @param {Uint32Array} pads
* @param {Uint32Array} strides
* @param {number} activation
* @returns {TensorF32}
*/
conv(kernel: TensorF32, dilations: Uint32Array, group: number, pads: Uint32Array, strides: Uint32Array, activation: number): TensorF32;
/**
* @param {TensorF32} kernel
* @param {TensorF32} bias
* @param {Uint32Array} dilations
* @param {number} group
* @param {Uint32Array} pads
* @param {Uint32Array} strides
* @param {number} activation
* @returns {TensorF32}
*/
conv_with_bias(kernel: TensorF32, bias: TensorF32, dilations: Uint32Array, group: number, pads: Uint32Array, strides: Uint32Array, activation: number): TensorF32;
/**
* @param {TensorF32} kernel
* @param {Uint32Array} dilations
* @param {number} group
* @param {Uint32Array} pads
* @param {Uint32Array} strides
* @returns {TensorF32}
*/
conv_transpose(kernel: TensorF32, dilations: Uint32Array, group: number, pads: Uint32Array, strides: Uint32Array): TensorF32;
/**
* @param {Uint32Array} kernel_shape
* @param {Uint32Array} pads
* @param {Uint32Array} strides
* @param {boolean} include_pad
* @returns {TensorF32}
*/
average_pool(kernel_shape: Uint32Array, pads: Uint32Array, strides: Uint32Array, include_pad: boolean): TensorF32;
/**
* @param {Uint32Array} pads
* @param {number} mode
* @param {number} value
* @returns {TensorF32}
*/
pad(pads: Uint32Array, mode: number, value: number): TensorF32;
/**
* @param {Float32Array} scales
* @returns {TensorF32}
*/
upsample(scales: Float32Array): TensorF32;
/**
* @param {TensorF32} mean
* @param {TensorF32} variance
* @param {number} epsilon
* @param {TensorF32} scale
* @param {TensorF32} bias
* @returns {TensorF32}
*/
normalize(mean: TensorF32, variance: TensorF32, epsilon: number, scale: TensorF32, bias: TensorF32): TensorF32;
/**
* @param {TensorF32} other
* @returns {TensorF32}
*/
matmul(other: TensorF32): TensorF32;
/**
* @param {TensorF32} other
* @param {boolean} a_transpose
* @param {boolean} b_transpose
* @param {number} alpha
* @returns {TensorF32}
*/
gemm(other: TensorF32, a_transpose: boolean, b_transpose: boolean, alpha: number): TensorF32;
/**
* @param {TensorF32} other
* @param {boolean} a_transpose
* @param {boolean} b_transpose
* @param {number} alpha
* @param {TensorF32} c
* @param {number} beta
* @returns {TensorF32}
*/
gemm_with_c(other: TensorF32, a_transpose: boolean, b_transpose: boolean, alpha: number, c: TensorF32, beta: number): TensorF32;
/**
* @param {TensorF32} values
* @param {Uint32Array} starts
* @returns {TensorF32}
*/
set_values(values: TensorF32, starts: Uint32Array): TensorF32;
/**
* @param {Uint32Array} shape
* @returns {TensorF32}
*/
reshape(shape: Uint32Array): TensorF32;
/**
* @param {TensorF32} other
* @param {number} axes
* @returns {TensorF32}
*/
concat(other: TensorF32, axes: number): TensorF32;
/**
* @param {Uint32Array} permutation
* @returns {TensorF32}
*/
transpose(permutation: Uint32Array): TensorF32;
/**
* @param {Uint32Array} repeats
* @returns {TensorF32}
*/
repeat(repeats: Uint32Array): TensorF32;
/**
* @param {Uint32Array} shape
* @returns {TensorF32}
*/
expand(shape: Uint32Array): TensorF32;
/**
* @returns {TensorF32}
*/
copy(): TensorF32;
/**
* @param {number} axis
* @param {Uint32Array} indices
* @param {Uint32Array} indice_shape
* @returns {TensorF32}
*/
gather(axis: number, indices: Uint32Array, indice_shape: Uint32Array): TensorF32;
/**
* @param {Uint32Array} starts
* @param {Uint32Array} ends
* @param {Uint32Array} axis
* @param {Int32Array} steps
* @returns {TensorF32}
*/
slice(starts: Uint32Array, ends: Uint32Array, axis: Uint32Array, steps: Int32Array): TensorF32;
/**
* @param {TensorU32} indices
* @param {TensorF32} b
* @param {number} m
* @returns {TensorF32}
*/
matmul_sparse_dense(indices: TensorU32, b: TensorF32, m: number): TensorF32;
/**
* @param {TensorU32} indices
* @param {TensorF32} b
* @param {Uint32Array} result_shape
* @param {number} alpha
* @param {number} beta
* @returns {TensorF32}
*/
add_sparse_dense(indices: TensorU32, b: TensorF32, result_shape: Uint32Array, alpha: number, beta: number): TensorF32;
/**
* @param {TensorU32} indices
* @param {TensorF32} b
* @param {Uint32Array} result_shape
* @param {number} alpha
* @param {number} beta
* @returns {TensorF32}
*/
subtract_sparse_dense(indices: TensorU32, b: TensorF32, result_shape: Uint32Array, alpha: number, beta: number): TensorF32;
/**
* @param {TensorU32} indices
* @param {TensorF32} b
* @param {Uint32Array} result_shape
* @param {number} alpha
* @returns {TensorF32}
*/
multiply_sparse_dense(indices: TensorU32, b: TensorF32, result_shape: Uint32Array, alpha: number): TensorF32;
/**
* @param {TensorU32} indices
* @param {TensorF32} b
* @param {Uint32Array} result_shape
* @param {number} alpha
* @returns {TensorF32}
*/
divide_sparse_dense(indices: TensorU32, b: TensorF32, result_shape: Uint32Array, alpha: number): TensorF32;
/**
* @param {TensorU32} indices
* @param {TensorU32} b_indices
* @param {TensorF32} b_values
* @param {Uint32Array} result_shape
* @param {number} alpha
* @param {number} beta
* @returns {TensorF32}
*/
add_sparse_sparse(indices: TensorU32, b_indices: TensorU32, b_values: TensorF32, result_shape: Uint32Array, alpha: number, beta: number): TensorF32;
/**
* @param {TensorU32} indices
* @param {TensorU32} b_indices
* @param {TensorF32} b_values
* @param {Uint32Array} result_shape
* @param {number} alpha
* @param {number} beta
* @returns {TensorF32}
*/
subtract_sparse_sparse(indices: TensorU32, b_indices: TensorU32, b_values: TensorF32, result_shape: Uint32Array, alpha: number, beta: number): TensorF32;
/**
* @param {TensorU32} indices
* @param {TensorU32} b_indices
* @param {TensorF32} b_values
* @param {Uint32Array} result_shape
* @param {number} alpha
* @returns {TensorF32}
*/
divide_sparse_sparse(indices: TensorU32, b_indices: TensorU32, b_values: TensorF32, result_shape: Uint32Array, alpha: number): TensorF32;
/**
* @param {TensorU32} indices
* @param {TensorU32} b_indices
* @param {TensorF32} b_values
* @param {Uint32Array} result_shape
* @param {number} alpha
* @returns {TensorF32}
*/
multiply_sparse_sparse(indices: TensorU32, b_indices: TensorU32, b_values: TensorF32, result_shape: Uint32Array, alpha: number): TensorF32;
/**
* @param {Uint32Array} shape
* @param {TensorU32} indices
* @param {Uint32Array} axes
* @param {boolean} keep_dims
* @returns {TensorF32}
*/
sum_sparse(shape: Uint32Array, indices: TensorU32, axes: Uint32Array, keep_dims: boolean): TensorF32;
/**
* @param {Uint32Array} shape
* @param {TensorU32} indices
* @param {Uint32Array} axes
* @param {boolean} keep_dims
* @returns {TensorF32}
*/
sum_square_sparse(shape: Uint32Array, indices: TensorU32, axes: Uint32Array, keep_dims: boolean): TensorF32;
/**
* @param {Uint32Array} shape
* @param {TensorU32} indices
* @param {Uint32Array} axes
* @param {boolean} keep_dims
* @returns {TensorF32}
*/
reduce_mean_sparse(shape: Uint32Array, indices: TensorU32, axes: Uint32Array, keep_dims: boolean): TensorF32;
/**
* @param {Uint32Array} shape
* @param {TensorU32} indices
* @param {Uint32Array} axes
* @param {boolean} keep_dims
* @returns {TensorF32}
*/
product_sparse(shape: Uint32Array, indices: TensorU32, axes: Uint32Array, keep_dims: boolean): TensorF32;
/**
* @param {Uint32Array} shape
* @param {TensorU32} indices
* @param {Uint32Array} axes
* @param {boolean} keep_dims
* @returns {TensorF32}
*/
max_sparse(shape: Uint32Array, indices: TensorU32, axes: Uint32Array, keep_dims: boolean): TensorF32;
/**
* @param {Uint32Array} shape
* @param {TensorU32} indices
* @param {Uint32Array} axes
* @param {boolean} keep_dims
* @returns {TensorF32}
*/
min_sparse(shape: Uint32Array, indices: TensorU32, axes: Uint32Array, keep_dims: boolean): TensorF32;
/**
* @param {Uint32Array} shape
* @param {TensorU32} indices
* @param {Uint32Array} axes
* @param {boolean} keep_dims
* @returns {TensorF32}
*/
reduce_mean_squared_sparse(shape: Uint32Array, indices: TensorU32, axes: Uint32Array, keep_dims: boolean): TensorF32;
/**
* @param {Uint32Array} shape
* @param {TensorU32} indices
* @param {Uint32Array} axes
* @param {boolean} keep_dims
* @returns {TensorF32}
*/
reduce_log_sum_sparse(shape: Uint32Array, indices: TensorU32, axes: Uint32Array, keep_dims: boolean): TensorF32;
/**
* @param {Uint32Array} shape
* @param {TensorU32} indices
* @param {Uint32Array} axes
* @param {boolean} keep_dims
* @returns {TensorF32}
*/
reduce_log_sum_exp_sparse(shape: Uint32Array, indices: TensorU32, axes: Uint32Array, keep_dims: boolean): TensorF32;
}
/**
*/
export class TensorF64 {
static __wrap(ptr: any): any;
/**
* @param {Uint32Array} shape
* @param {Float64Array} values
* @returns {TensorF64}
*/
static create(shape: Uint32Array, values: Float64Array): TensorF64;
/**
* @param {Uint32Array} shape
* @param {number} value
* @returns {TensorF64}
*/
static create_constant(shape: Uint32Array, value: number): TensorF64;
__destroy_into_raw(): number | undefined;
ptr: number | undefined;
free(): void;
/**
* @returns {Float64Array}
*/
get_vals(): Float64Array;
/**
* @returns {Uint32Array}
*/
get_shape(): Uint32Array;
/**
* @returns {TensorF64}
*/
exp(): TensorF64;
/**
* @returns {TensorF64}
*/
log(): TensorF64;
/**
* @returns {TensorF64}
*/
sqrt(): TensorF64;
/**
* @returns {TensorF64}
*/
sin(): TensorF64;
/**
* @returns {TensorF64}
*/
cos(): TensorF64;
/**
* @returns {TensorF64}
*/
tan(): TensorF64;
/**
* @returns {TensorF64}
*/
asin(): TensorF64;
/**
* @returns {TensorF64}
*/
acos(): TensorF64;
/**
* @returns {TensorF64}
*/
atan(): TensorF64;
/**
* @returns {TensorF64}
*/
sinh(): TensorF64;
/**
* @returns {TensorF64}
*/
cosh(): TensorF64;
/**
* @returns {TensorF64}
*/
tanh(): TensorF64;
/**
* @returns {TensorF64}
*/
asinh(): TensorF64;
/**
* @returns {TensorF64}
*/
acosh(): TensorF64;
/**
* @returns {TensorF64}
*/
atanh(): TensorF64;
/**
* @returns {TensorF64}
*/
sigmoid(): TensorF64;
/**
* @returns {TensorF64}
*/
floor(): TensorF64;
/**
* @returns {TensorF64}
*/
ceil(): TensorF64;
/**
* @returns {TensorF64}
*/
round(): TensorF64;
/**
* @param {number} power
* @param {number} factor
* @returns {TensorF64}
*/
power_scalar(power: number, factor: number): TensorF64;
/**
* @param {number} alpha
* @param {number} beta
* @returns {TensorF64}
*/
hard_sigmoid(alpha: number, beta: number): TensorF64;
/**
* @returns {TensorF64}
*/
abs(): TensorF64;
/**
* @returns {TensorF64}
*/
sign(): TensorF64;
/**
* @returns {TensorF64}
*/
negate(): TensorF64;
/**
* @param {number} factor
* @param {number} add
* @returns {TensorF64}
*/
add_multiply_scalar(factor: number, add: number): TensorF64;
/**
* @param {number} min
* @param {number} max
* @returns {TensorF64}
*/
clip(min: number, max: number): TensorF64;
/**
* @param {number} min
* @returns {TensorF64}
*/
clip_min(min: number): TensorF64;
/**
* @param {number} max
* @returns {TensorF64}
*/
clip_max(max: number): TensorF64;
/**
* @param {TensorF64} other
* @returns {TensorF64}
*/
power(other: TensorF64): TensorF64;
/**
* @param {TensorF64} other
* @returns {TensorF64}
*/
bce(other: TensorF64): TensorF64;
/**
* @param {TensorF64} other
* @returns {TensorF64}
*/
bce_back(other: TensorF64): TensorF64;
/**
* @param {TensorF64} other
* @param {number} alpha
* @param {number} beta
* @returns {TensorF64}
*/
addition(other: TensorF64, alpha: number, beta: number): TensorF64;
/**
* @param {TensorF64} other
* @param {number} alpha
* @param {number} beta
* @returns {TensorF64}
*/
subtraction(other: TensorF64, alpha: number, beta: number): TensorF64;
/**
* @param {TensorF64} other
* @param {number} alpha
* @returns {TensorF64}
*/
multiply(other: TensorF64, alpha: number): TensorF64;
/**
* @param {TensorF64} other
* @param {number} alpha
* @returns {TensorF64}
*/
divide(other: TensorF64, alpha: number): TensorF64;
/**
* @param {number} min
* @param {number} max
* @param {TensorF64} grad
* @returns {TensorF64}
*/
clip_backward(min: number, max: number, grad: TensorF64): TensorF64;
/**
* @param {number} min
* @param {TensorF64} grad
* @returns {TensorF64}
*/
clip_min_backward(min: number, grad: TensorF64): TensorF64;
/**
* @param {number} max
* @param {TensorF64} grad
* @returns {TensorF64}
*/
clip_max_backward(max: number, grad: TensorF64): TensorF64;
/**
* @param {Uint32Array} axes
* @param {boolean} keep_dims
* @returns {TensorF64}
*/
sum(axes: Uint32Array, keep_dims: boolean): TensorF64;
/**
* @param {Uint32Array} axes
* @param {boolean} keep_dims
* @returns {TensorF64}
*/
sum_square(axes: Uint32Array, keep_dims: boolean): TensorF64;
/**
* @param {Uint32Array} axes
* @param {boolean} keep_dims
* @returns {TensorF64}
*/
product(axes: Uint32Array, keep_dims: boolean): TensorF64;
/**
* @param {Uint32Array} axes
* @param {boolean} keep_dims
* @returns {TensorF64}
*/
max(axes: Uint32Array, keep_dims: boolean): TensorF64;
/**
* @param {Uint32Array} axes
* @param {boolean} keep_dims
* @returns {TensorF64}
*/
min(axes: Uint32Array, keep_dims: boolean): TensorF64;
/**
* @param {Uint32Array} axes
* @param {boolean} keep_dims
* @returns {TensorF64}
*/
reduce_mean(axes: Uint32Array, keep_dims: boolean): TensorF64;
/**
* @param {Uint32Array} axes
* @param {boolean} keep_dims
* @returns {TensorF64}
*/
reduce_mean_square(axes: Uint32Array, keep_dims: boolean): TensorF64;
/**
* @param {Uint32Array} axes
* @param {boolean} keep_dims
* @returns {TensorF64}
*/
reduce_log_sum(axes: Uint32Array, keep_dims: boolean): TensorF64;
/**
* @param {Uint32Array} axes
* @param {boolean} keep_dims
* @returns {TensorF64}
*/
reduce_log_sum_exp(axes: Uint32Array, keep_dims: boolean): TensorF64;
/**
* @param {TensorF64} kernel
* @param {Uint32Array} dilations
* @param {number} group
* @param {Uint32Array} pads
* @param {Uint32Array} strides
* @param {number} activation
* @returns {TensorF64}
*/
conv(kernel: TensorF64, dilations: Uint32Array, group: number, pads: Uint32Array, strides: Uint32Array, activation: number): TensorF64;
/**
* @param {TensorF64} kernel
* @param {TensorF64} bias
* @param {Uint32Array} dilations
* @param {number} group
* @param {Uint32Array} pads
* @param {Uint32Array} strides
* @param {number} activation
* @returns {TensorF64}
*/
conv_with_bias(kernel: TensorF64, bias: TensorF64, dilations: Uint32Array, group: number, pads: Uint32Array, strides: Uint32Array, activation: number): TensorF64;
/**
* @param {TensorF64} kernel
* @param {Uint32Array} dilations
* @param {number} group
* @param {Uint32Array} pads
* @param {Uint32Array} strides
* @returns {TensorF64}
*/
conv_transpose(kernel: TensorF64, dilations: Uint32Array, group: number, pads: Uint32Array, strides: Uint32Array): TensorF64;
/**
* @param {Uint32Array} kernel_shape
* @param {Uint32Array} pads
* @param {Uint32Array} strides
* @param {boolean} include_pad
* @returns {TensorF64}
*/
average_pool(kernel_shape: Uint32Array, pads: Uint32Array, strides: Uint32Array, include_pad: boolean): TensorF64;
/**
* @param {Uint32Array} pads
* @param {number} mode
* @param {number} value
* @returns {TensorF64}
*/
pad(pads: Uint32Array, mode: number, value: number): TensorF64;
/**
* @param {Float32Array} scales
* @returns {TensorF64}
*/
upsample(scales: Float32Array): TensorF64;
/**
* @param {TensorF64} mean
* @param {TensorF64} variance
* @param {number} epsilon
* @param {TensorF64} scale
* @param {TensorF64} bias
* @returns {TensorF64}
*/
normalize(mean: TensorF64, variance: TensorF64, epsilon: number, scale: TensorF64, bias: TensorF64): TensorF64;
/**
* @param {TensorF64} other
* @returns {TensorF64}
*/
matmul(other: TensorF64): TensorF64;
/**
* @param {TensorF64} other
* @param {boolean} a_transpose
* @param {boolean} b_transpose
* @param {number} alpha
* @returns {TensorF64}
*/
gemm(other: TensorF64, a_transpose: boolean, b_transpose: boolean, alpha: number): TensorF64;
/**
* @param {TensorF64} other
* @param {boolean} a_transpose
* @param {boolean} b_transpose
* @param {number} alpha
* @param {TensorF64} c
* @param {number} beta
* @returns {TensorF64}
*/
gemm_with_c(other: TensorF64, a_transpose: boolean, b_transpose: boolean, alpha: number, c: TensorF64, beta: number): TensorF64;
/**
* @param {TensorF64} values
* @param {Uint32Array} starts
* @returns {TensorF64}
*/
set_values(values: TensorF64, starts: Uint32Array): TensorF64;
/**
* @param {Uint32Array} shape
* @returns {TensorF64}
*/
reshape(shape: Uint32Array): TensorF64;
/**
* @param {TensorF64} other
* @param {number} axes
* @returns {TensorF64}
*/
concat(other: TensorF64, axes: number): TensorF64;
/**
* @param {Uint32Array} permutation
* @returns {TensorF64}
*/
transpose(permutation: Uint32Array): TensorF64;
/**
* @param {Uint32Array} repeats
* @returns {TensorF64}
*/
repeat(repeats: Uint32Array): TensorF64;
/**
* @param {Uint32Array} shape
* @returns {TensorF64}
*/
expand(shape: Uint32Array): TensorF64;
/**
* @returns {TensorF64}
*/
copy(): TensorF64;
/**
* @param {number} axis
* @param {Uint32Array} indices
* @param {Uint32Array} indice_shape
* @returns {TensorF64}
*/
gather(axis: number, indices: Uint32Array, indice_shape: Uint32Array): TensorF64;
/**
* @param {Uint32Array} starts
* @param {Uint32Array} ends
* @param {Uint32Array} axis
* @param {Int32Array} steps
* @returns {TensorF64}
*/
slice(starts: Uint32Array, ends: Uint32Array, axis: Uint32Array, steps: Int32Array): TensorF64;
/**
* @param {TensorU32} indices
* @param {TensorF64} b
* @param {number} m
* @returns {TensorF64}
*/
matmul_sparse_dense(indices: TensorU32, b: TensorF64, m: number): TensorF64;
/**
* @param {TensorU32} indices
* @param {TensorF64} b
* @param {Uint32Array} result_shape
* @param {number} alpha
* @param {number} beta
* @returns {TensorF64}
*/
add_sparse_dense(indices: TensorU32, b: TensorF64, result_shape: Uint32Array, alpha: number, beta: number): TensorF64;
/**
* @param {TensorU32} indices
* @param {TensorF64} b
* @param {Uint32Array} result_shape
* @param {number} alpha
* @param {number} beta
* @returns {TensorF64}
*/
subtract_sparse_dense(indices: TensorU32, b: TensorF64, result_shape: Uint32Array, alpha: number, beta: number): TensorF64;
/**
* @param {TensorU32} indices
* @param {TensorF64} b
* @param {Uint32Array} result_shape
* @param {number} alpha
* @returns {TensorF64}
*/
multiply_sparse_dense(indices: TensorU32, b: TensorF64, result_shape: Uint32Array, alpha: number): TensorF64;
/**
* @param {TensorU32} indices
* @param {TensorF64} b
* @param {Uint32Array} result_shape
* @param {number} alpha
* @returns {TensorF64}
*/
divide_sparse_dense(indices: TensorU32, b: TensorF64, result_shape: Uint32Array, alpha: number): TensorF64;
/**
* @param {TensorU32} indices
* @param {TensorU32} b_indices
* @param {TensorF64} b_values
* @param {Uint32Array} result_shape
* @param {number} alpha
* @param {number} beta
* @returns {TensorF64}
*/
add_sparse_sparse(indices: TensorU32, b_indices: TensorU32, b_values: TensorF64, result_shape: Uint32Array, alpha: number, beta: number): TensorF64;
/**
* @param {TensorU32} indices
* @param {TensorU32} b_indices
* @param {TensorF64} b_values
* @param {Uint32Array} result_shape
* @param {number} alpha
* @param {number} beta
* @returns {TensorF64}
*/
subtract_sparse_sparse(indices: TensorU32, b_indices: TensorU32, b_values: TensorF64, result_shape: Uint32Array, alpha: number, beta: number): TensorF64;
/**
* @param {TensorU32} indices
* @param {TensorU32} b_indices
* @param {TensorF64} b_values
* @param {Uint32Array} result_shape
* @param {number} alpha
* @returns {TensorF64}
*/
divide_sparse_sparse(indices: TensorU32, b_indices: TensorU32, b_values: TensorF64, result_shape: Uint32Array, alpha: number): TensorF64;
/**
* @param {TensorU32} indices
* @param {TensorU32} b_indices
* @param {TensorF64} b_values
* @param {Uint32Array} result_shape
* @param {number} alpha
* @returns {TensorF64}
*/
multiply_sparse_sparse(indices: TensorU32, b_indices: TensorU32, b_values: TensorF64, result_shape: Uint32Array, alpha: number): TensorF64;
/**
* @param {Uint32Array} shape
* @param {TensorU32} indices
* @param {Uint32Array} axes
* @param {boolean} keep_dims
* @returns {TensorF64}
*/
sum_sparse(shape: Uint32Array, indices: TensorU32, axes: Uint32Array, keep_dims: boolean): TensorF64;
/**
* @param {Uint32Array} shape
* @param {TensorU32} indices
* @param {Uint32Array} axes
* @param {boolean} keep_dims
* @returns {TensorF64}
*/
sum_square_sparse(shape: Uint32Array, indices: TensorU32, axes: Uint32Array, keep_dims: boolean): TensorF64;
/**
* @param {Uint32Array} shape
* @param {TensorU32} indices
* @param {Uint32Array} axes
* @param {boolean} keep_dims
* @returns {TensorF64}
*/
reduce_mean_sparse(shape: Uint32Array, indices: TensorU32, axes: Uint32Array, keep_dims: boolean): TensorF64;
/**
* @param {Uint32Array} shape
* @param {TensorU32} indices
* @param {Uint32Array} axes
* @param {boolean} keep_dims
* @returns {TensorF64}
*/
product_sparse(shape: Uint32Array, indices: TensorU32, axes: Uint32Array, keep_dims: boolean): TensorF64;
/**
* @param {Uint32Array} shape
* @param {TensorU32} indices
* @param {Uint32Array} axes
* @param {boolean} keep_dims
* @returns {TensorF64}
*/
max_sparse(shape: Uint32Array, indices: TensorU32, axes: Uint32Array, keep_dims: boolean): TensorF64;
/**
* @param {Uint32Array} shape
* @param {TensorU32} indices
* @param {Uint32Array} axes
* @param {boolean} keep_dims
* @returns {TensorF64}
*/
min_sparse(shape: Uint32Array, indices: TensorU32, axes: Uint32Array, keep_dims: boolean): TensorF64;
/**
* @param {Uint32Array} shape
* @param {TensorU32} indices
* @param {Uint32Array} axes
* @param {boolean} keep_dims
* @returns {TensorF64}
*/
reduce_mean_squared_sparse(shape: Uint32Array, indices: TensorU32, axes: Uint32Array, keep_dims: boolean): TensorF64;
/**
* @param {Uint32Array} shape
* @param {TensorU32} indices
* @param {Uint32Array} axes
* @param {boolean} keep_dims
* @returns {TensorF64}
*/
reduce_log_sum_sparse(shape: Uint32Array, indices: TensorU32, axes: Uint32Array, keep_dims: boolean): TensorF64;
/**
* @param {Uint32Array} shape
* @param {TensorU32} indices
* @param {Uint32Array} axes
* @param {boolean} keep_dims
* @returns {TensorF64}
*/
reduce_log_sum_exp_sparse(shape: Uint32Array, indices: TensorU32, axes: Uint32Array, keep_dims: boolean): TensorF64;
}
/**
*/
export class TensorI16 {
static __wrap(ptr: any): any;
/**
* @param {Uint32Array} shape
* @param {Int16Array} values
* @returns {TensorI16}
*/
static create(shape: Uint32Array, values: Int16Array): TensorI16;
/**
* @param {Uint32Array} shape
* @param {number} value
* @returns {TensorI16}
*/
static create_constant(shape: Uint32Array, value: number): TensorI16;
__destroy_into_raw(): number | undefined;
ptr: number | undefined;
free(): void;
/**
* @returns {Int16Array}
*/
get_vals(): Int16Array;
/**
* @returns {Uint32Array}
*/
get_shape(): Uint32Array;
/**
* @param {number} power
* @param {number} factor
* @returns {TensorI16}
*/
power_scalar(power: number, factor: number): TensorI16;
/**
* @returns {TensorI16}
*/
abs(): TensorI16;
/**
* @returns {TensorI16}
*/
sign(): TensorI16;
/**
* @returns {TensorI16}
*/
negate(): TensorI16;
/**
* @param {number} factor
* @param {number} add
* @returns {TensorI16}
*/
add_multiply_scalar(factor: number, add: number): TensorI16;
/**
* @param {number} min
* @param {number} max
* @returns {TensorI16}
*/
clip(min: number, max: number): TensorI16;
/**
* @param {number} min
* @returns {TensorI16}
*/
clip_min(min: number): TensorI16;
/**
* @param {number} max
* @returns {TensorI16}
*/
clip_max(max: number): TensorI16;
/**
* @param {TensorI16} other
* @returns {TensorI16}
*/
power(other: TensorI16): TensorI16;
/**
* @param {TensorI16} other
* @param {number} alpha
* @param {number} beta
* @returns {TensorI16}
*/
addition(other: TensorI16, alpha: number, beta: number): TensorI16;
/**
* @param {TensorI16} other
* @param {number} alpha
* @param {number} beta
* @returns {TensorI16}
*/
subtraction(other: TensorI16, alpha: number, beta: number): TensorI16;
/**
* @param {TensorI16} other
* @param {number} alpha
* @returns {TensorI16}
*/
multiply(other: TensorI16, alpha: number): TensorI16;
/**
* @param {TensorI16} other
* @param {number} alpha
* @returns {TensorI16}
*/
divide(other: TensorI16, alpha: number): TensorI16;
/**
* @param {number} min
* @param {number} max
* @param {TensorI16} grad
* @returns {TensorI16}
*/
clip_backward(min: number, max: number, grad: TensorI16): TensorI16;
/**
* @param {number} min
* @param {TensorI16} grad
* @returns {TensorI16}
*/
clip_min_backward(min: number, grad: TensorI16): TensorI16;
/**
* @param {number} max
* @param {TensorI16} grad
* @returns {TensorI16}
*/
clip_max_backward(max: number, grad: TensorI16): TensorI16;
/**
* @param {Uint32Array} axes
* @param {boolean} keep_dims
* @returns {TensorI16}
*/
sum(axes: Uint32Array, keep_dims: boolean): TensorI16;
/**
* @param {Uint32Array} axes
* @param {boolean} keep_dims
* @returns {TensorI16}
*/
sum_square(axes: Uint32Array, keep_dims: boolean): TensorI16;
/**
* @param {Uint32Array} axes
* @param {boolean} keep_dims
* @returns {TensorI16}
*/
product(axes: Uint32Array, keep_dims: boolean): TensorI16;
/**
* @param {Uint32Array} axes
* @param {boolean} keep_dims
* @returns {TensorI16}
*/
max(axes: Uint32Array, keep_dims: boolean): TensorI16;
/**
* @param {Uint32Array} axes
* @param {boolean} keep_dims
* @returns {TensorI16}
*/
min(axes: Uint32Array, keep_dims: boolean): TensorI16;
/**
* @param {Uint32Array} axes
* @param {boolean} keep_dims
* @returns {TensorI16}
*/
reduce_mean(axes: Uint32Array, keep_dims: boolean): TensorI16;
/**
* @param {Uint32Array} axes
* @param {boolean} keep_dims
* @returns {TensorI16}
*/
reduce_mean_square(axes: Uint32Array, keep_dims: boolean): TensorI16;
/**
* @param {TensorI16} kernel
* @param {Uint32Array} dilations
* @param {number} group
* @param {Uint32Array} pads
* @param {Uint32Array} strides
* @param {number} activation
* @returns {TensorI16}
*/
conv(kernel: TensorI16, dilations: Uint32Array, group: number, pads: Uint32Array, strides: Uint32Array, activation: number): TensorI16;
/**
* @param {TensorI16} kernel
* @param {TensorI16} bias
* @param {Uint32Array} dilations
* @param {number} group
* @param {Uint32Array} pads
* @param {Uint32Array} strides
* @param {number} activation
* @returns {TensorI16}
*/
conv_with_bias(kernel: TensorI16, bias: TensorI16, dilations: Uint32Array, group: number, pads: Uint32Array, strides: Uint32Array, activation: number): TensorI16;
/**
* @param {TensorI16} kernel
* @param {Uint32Array} dilations
* @param {number} group
* @param {Uint32Array} pads
* @param {Uint32Array} strides
* @returns {TensorI16}
*/
conv_transpose(kernel: TensorI16, dilations: Uint32Array, group: number, pads: Uint32Array, strides: Uint32Array): TensorI16;
/**
* @param {Uint32Array} kernel_shape
* @param {Uint32Array} pads
* @param {Uint32Array} strides
* @param {boolean} include_pad
* @returns {TensorI16}
*/
average_pool(kernel_shape: Uint32Array, pads: Uint32Array, strides: Uint32Array, include_pad: boolean): TensorI16;
/**
* @param {Uint32Array} pads
* @param {number} mode
* @param {number} value
* @returns {TensorI16}
*/
pad(pads: Uint32Array, mode: number, value: number): TensorI16;
/**
* @param {Float32Array} scales
* @returns {TensorI16}
*/
upsample(scales: Float32Array): TensorI16;
/**
* @param {TensorI16} other
* @returns {TensorI16}
*/
matmul(other: TensorI16): TensorI16;
/**
* @param {TensorI16} other
* @param {boolean} a_transpose
* @param {boolean} b_transpose
* @param {number} alpha
* @returns {TensorI16}
*/
gemm(other: TensorI16, a_transpose: boolean, b_transpose: boolean, alpha: number): TensorI16;
/**
* @param {TensorI16} other
* @param {boolean} a_transpose
* @param {boolean} b_transpose
* @param {number} alpha
* @param {TensorI16} c
* @param {number} beta
* @returns {TensorI16}
*/
gemm_with_c(other: TensorI16, a_transpose: boolean, b_transpose: boolean, alpha: number, c: TensorI16, beta: number): TensorI16;
/**
* @param {TensorI16} values
* @param {Uint32Array} starts
* @returns {TensorI16}
*/
set_values(values: TensorI16, starts: Uint32Array): TensorI16;
/**
* @param {Uint32Array} shape
* @returns {TensorI16}
*/
reshape(shape: Uint32Array): TensorI16;
/**
* @param {TensorI16} other
* @param {number} axes
* @returns {TensorI16}
*/
concat(other: TensorI16, axes: number): TensorI16;
/**
* @param {Uint32Array} permutation
* @returns {TensorI16}
*/
transpose(permutation: Uint32Array): TensorI16;
/**
* @param {Uint32Array} repeats
* @returns {TensorI16}
*/
repeat(repeats: Uint32Array): TensorI16;
/**
* @param {Uint32Array} shape
* @returns {TensorI16}
*/
expand(shape: Uint32Array): TensorI16;
/**
* @returns {TensorI16}
*/
copy(): TensorI16;
/**
* @param {number} axis
* @param {Uint32Array} indices
* @param {Uint32Array} indice_shape
* @returns {TensorI16}
*/
gather(axis: number, indices: Uint32Array, indice_shape: Uint32Array): TensorI16;
/**
* @param {Uint32Array} starts
* @param {Uint32Array} ends
* @param {Uint32Array} axis
* @param {Int32Array} steps
* @returns {TensorI16}
*/
slice(starts: Uint32Array, ends: Uint32Array, axis: Uint32Array, steps: Int32Array): TensorI16;
/**
* @param {TensorU32} indices
* @param {TensorI16} b
* @param {number} m
* @returns {TensorI16}
*/
matmul_sparse_dense(indices: TensorU32, b: TensorI16, m: number): TensorI16;
/**
* @param {TensorU32} indices
* @param {TensorI16} b
* @param {Uint32Array} result_shape
* @param {number} alpha
* @param {number} beta
* @returns {TensorI16}
*/
add_sparse_dense(indices: TensorU32, b: TensorI16, result_shape: Uint32Array, alpha: number, beta: number): TensorI16;
/**
* @param {TensorU32} indices
* @param {TensorI16} b
* @param {Uint32Array} result_shape
* @param {number} alpha
* @param {number} beta
* @returns {TensorI16}
*/
subtract_sparse_dense(indices: TensorU32, b: TensorI16, result_shape: Uint32Array, alpha: number, beta: number): TensorI16;
/**
* @param {TensorU32} indices
* @param {TensorI16} b
* @param {Uint32Array} result_shape
* @param {number} alpha
* @returns {TensorI16}
*/
multiply_sparse_dense(indices: TensorU32, b: TensorI16, result_shape: Uint32Array, alpha: number): TensorI16;
/**
* @param {TensorU32} indices
* @param {TensorI16} b
* @param {Uint32Array} result_shape
* @param {number} alpha
* @returns {TensorI16}
*/
divide_sparse_dense(indices: TensorU32, b: TensorI16, result_shape: Uint32Array, alpha: number): TensorI16;
/**
* @param {TensorU32} indices
* @param {TensorU32} b_indices
* @param {TensorI16} b_values
* @param {Uint32Array} result_shape
* @param {number} alpha
* @param {number} beta
* @returns {TensorI16}
*/
add_sparse_sparse(indices: TensorU32, b_indices: TensorU32, b_values: TensorI16, result_shape: Uint32Array, alpha: number, beta: number): TensorI16;
/**
* @param {TensorU32} indices
* @param {TensorU32} b_indices
* @param {TensorI16} b_values
* @param {Uint32Array} result_shape
* @param {number} alpha
* @param {number} beta
* @returns {TensorI16}
*/
subtract_sparse_sparse(indices: TensorU32, b_indices: TensorU32, b_values: TensorI16, result_shape: Uint32Array, alpha: number, beta: number): TensorI16;
/**
* @param {TensorU32} indices
* @param {TensorU32} b_indices
* @param {TensorI16} b_values
* @param {Uint32Array} result_shape
* @param {number} alpha
* @returns {TensorI16}
*/
divide_sparse_sparse(indices: TensorU32, b_indices: TensorU32, b_values: TensorI16, result_shape: Uint32Array, alpha: number): TensorI16;
/**
* @param {TensorU32} indices
* @param {TensorU32} b_indices
* @param {TensorI16} b_values
* @param {Uint32Array} result_shape
* @param {number} alpha
* @returns {TensorI16}
*/
multiply_sparse_sparse(indices: TensorU32, b_indices: TensorU32, b_values: TensorI16, result_shape: Uint32Array, alpha: number): TensorI16;
/**
* @param {Uint32Array} shape
* @param {TensorU32} indices
* @param {Uint32Array} axes
* @param {boolean} keep_dims
* @returns {TensorI16}
*/
sum_sparse(shape: Uint32Array, indices: TensorU32, axes: Uint32Array, keep_dims: boolean): TensorI16;
/**
* @param {Uint32Array} shape
* @param {TensorU32} indices
* @param {Uint32Array} axes
* @param {boolean} keep_dims
* @returns {TensorI16}
*/
sum_square_sparse(shape: Uint32Array, indices: TensorU32, axes: Uint32Array, keep_dims: boolean): TensorI16;
/**
* @param {Uint32Array} shape
* @param {TensorU32} indices
* @param {Uint32Array} axes
* @param {boolean} keep_dims
* @returns {TensorI16}
*/
reduce_mean_sparse(shape: Uint32Array, indices: TensorU32, axes: Uint32Array, keep_dims: boolean): TensorI16;
/**
* @param {Uint32Array} shape
* @param {TensorU32} indices
* @param {Uint32Array} axes
* @param {boolean} keep_dims
* @returns {TensorI16}
*/
product_sparse(shape: Uint32Array, indices: TensorU32, axes: Uint32Array, keep_dims: boolean): TensorI16;
/**
* @param {Uint32Array} shape
* @param {TensorU32} indices
* @param {Uint32Array} axes
* @param {boolean} keep_dims
* @returns {TensorI16}
*/
max_sparse(shape: Uint32Array, indices: TensorU32, axes: Uint32Array, keep_dims: boolean): TensorI16;
/**
* @param {Uint32Array} shape
* @param {TensorU32} indices
* @param {Uint32Array} axes
* @param {boolean} keep_dims
* @returns {TensorI16}
*/
min_sparse(shape: Uint32Array, indices: TensorU32, axes: Uint32Array, keep_dims: boolean): TensorI16;
/**
* @param {Uint32Array} shape
* @param {TensorU32} indices
* @param {Uint32Array} axes
* @param {boolean} keep_dims
* @returns {TensorI16}
*/
reduce_mean_squared_sparse(shape: Uint32Array, indices: TensorU32, axes: Uint32Array, keep_dims: boolean): TensorI16;
}
/**
*/
export class TensorI32 {
static __wrap(ptr: any): any;
/**
* @param {Uint32Array} shape
* @param {Int32Array} values
* @returns {TensorI32}
*/
static create(shape: Uint32Array, values: Int32Array): TensorI32;
/**
* @param {Uint32Array} shape
* @param {number} value
* @returns {TensorI32}
*/
static create_constant(shape: Uint32Array, value: number): TensorI32;
__destroy_into_raw(): number | undefined;
ptr: number | undefined;
free(): void;
/**
* @returns {Int32Array}
*/
get_vals(): Int32Array;
/**
* @returns {Uint32Array}
*/
get_shape(): Uint32Array;
/**
* @param {number} power
* @param {number} factor
* @returns {TensorI32}
*/
power_scalar(power: number, factor: number): TensorI32;
/**
* @returns {TensorI32}
*/
abs(): TensorI32;
/**
* @returns {TensorI32}
*/
sign(): TensorI32;
/**
* @returns {TensorI32}
*/
negate(): TensorI32;
/**
* @param {number} factor
* @param {number} add
* @returns {TensorI32}
*/
add_multiply_scalar(factor: number, add: number): TensorI32;
/**
* @param {number} min
* @param {number} max
* @returns {TensorI32}
*/
clip(min: number, max: number): TensorI32;
/**
* @param {number} min
* @returns {TensorI32}
*/
clip_min(min: number): TensorI32;
/**
* @param {number} max
* @returns {TensorI32}
*/
clip_max(max: number): TensorI32;
/**
* @param {TensorI32} other
* @returns {TensorI32}
*/
power(other: TensorI32): TensorI32;
/**
* @param {TensorI32} other
* @param {number} alpha
* @param {number} beta
* @returns {TensorI32}
*/
addition(other: TensorI32, alpha: number, beta: number): TensorI32;
/**
* @param {TensorI32} other
* @param {number} alpha
* @param {number} beta
* @returns {TensorI32}
*/
subtraction(other: TensorI32, alpha: number, beta: number): TensorI32;
/**
* @param {TensorI32} other
* @param {number} alpha
* @returns {TensorI32}
*/
multiply(other: TensorI32, alpha: number): TensorI32;
/**
* @param {TensorI32} other
* @param {number} alpha
* @returns {TensorI32}
*/
divide(other: TensorI32, alpha: number): TensorI32;
/**
* @param {number} min
* @param {number} max
* @param {TensorI32} grad
* @returns {TensorI32}
*/
clip_backward(min: number, max: number, grad: TensorI32): TensorI32;
/**
* @param {number} min
* @param {TensorI32} grad
* @returns {TensorI32}
*/
clip_min_backward(min: number, grad: TensorI32): TensorI32;
/**
* @param {number} max
* @param {TensorI32} grad
* @returns {TensorI32}
*/
clip_max_backward(max: number, grad: TensorI32): TensorI32;
/**
* @param {Uint32Array} axes
* @param {boolean} keep_dims
* @returns {TensorI32}
*/
sum(axes: Uint32Array, keep_dims: boolean): TensorI32;
/**
* @param {Uint32Array} axes
* @param {boolean} keep_dims
* @returns {TensorI32}
*/
sum_square(axes: Uint32Array, keep_dims: boolean): TensorI32;
/**
* @param {Uint32Array} axes
* @param {boolean} keep_dims
* @returns {TensorI32}
*/
product(axes: Uint32Array, keep_dims: boolean): TensorI32;
/**
* @param {Uint32Array} axes
* @param {boolean} keep_dims
* @returns {TensorI32}
*/
max(axes: Uint32Array, keep_dims: boolean): TensorI32;
/**
* @param {Uint32Array} axes
* @param {boolean} keep_dims
* @returns {TensorI32}
*/
min(axes: Uint32Array, keep_dims: boolean): TensorI32;
/**
* @param {Uint32Array} axes
* @param {boolean} keep_dims
* @returns {TensorI32}
*/
reduce_mean(axes: Uint32Array, keep_dims: boolean): TensorI32;
/**
* @param {Uint32Array} axes
* @param {boolean} keep_dims
* @returns {TensorI32}
*/
reduce_mean_square(axes: Uint32Array, keep_dims: boolean): TensorI32;
/**
* @param {TensorI32} kernel
* @param {Uint32Array} dilations
* @param {number} group
* @param {Uint32Array} pads
* @param {Uint32Array} strides
* @param {number} activation
* @returns {TensorI32}
*/
conv(kernel: TensorI32, dilations: Uint32Array, group: number, pads: Uint32Array, strides: Uint32Array, activation: number): TensorI32;
/**
* @param {TensorI32} kernel
* @param {TensorI32} bias
* @param {Uint32Array} dilations
* @param {number} group
* @param {Uint32Array} pads
* @param {Uint32Array} strides
* @param {number} activation
* @returns {TensorI32}
*/
conv_with_bias(kernel: TensorI32, bias: TensorI32, dilations: Uint32Array, group: number, pads: Uint32Array, strides: Uint32Array, activation: number): TensorI32;
/**
* @param {TensorI32} kernel
* @param {Uint32Array} dilations
* @param {number} group
* @param {Uint32Array} pads
* @param {Uint32Array} strides
* @returns {TensorI32}
*/
conv_transpose(kernel: TensorI32, dilations: Uint32Array, group: number, pads: Uint32Array, strides: Uint32Array): TensorI32;
/**
* @param {Uint32Array} kernel_shape
* @param {Uint32Array} pads
* @param {Uint32Array} strides
* @param {boolean} include_pad
* @returns {TensorI32}
*/
average_pool(kernel_shape: Uint32Array, pads: Uint32Array, strides: Uint32Array, include_pad: boolean): TensorI32;
/**
* @param {Uint32Arra