UNPKG

@hoff97/tensor-js

Version:

PyTorch like deep learning inferrence library

80 lines (79 loc) 4.64 kB
import Tensor, { Activation, DType, PadMode, TensorValues } from '../../types'; import { MemoryEntry } from './memory'; import { CPUTensor } from '../cpu/tensor'; import REGL from 'regl'; import { DTypeGpu, GPUTensorI } from './interface'; export declare class GPUTensor<DTpe extends DTypeGpu = 'float32'> extends Tensor<DTpe> implements GPUTensorI { shape: readonly number[]; static range(start: number, limit: number, delta: number, dtype?: DTypeGpu): GPUTensor<DTypeGpu>; memory: MemoryEntry; size: number; deleted: boolean; constructor(values: number[] | MemoryEntry, shape: readonly number[], dtype?: DTpe); static fromData(data: REGL.TextureImageData): GPUTensor<"float32">; cast<DTpe2 extends DType>(dtype: DTpe2): Tensor<DTpe2>; getValues(): Promise<TensorValues[DTpe]>; getShape(): readonly number[]; constantLike(value: number): Tensor<DTpe>; singleConstant(value: number): Tensor<DTpe>; delete(): void; copy(): Tensor<DTpe>; exp(): Tensor<DTpe>; log(): Tensor<DTpe>; sqrt(): Tensor<DTpe>; abs(): Tensor<DTpe>; sin(): Tensor<DTpe>; cos(): Tensor<DTpe>; tan(): Tensor<DTpe>; asin(): Tensor<DTpe>; acos(): Tensor<DTpe>; atan(): Tensor<DTpe>; sinh(): Tensor<DTpe>; cosh(): Tensor<DTpe>; tanh(): Tensor<DTpe>; asinh(): Tensor<DTpe>; acosh(): Tensor<DTpe>; atanh(): Tensor<DTpe>; sigmoid(): Tensor<DTpe>; hardSigmoid(alpha: number, beta: number): Tensor<DTpe>; floor(): Tensor<DTpe>; ceil(): Tensor<DTpe>; round(): Tensor<DTpe>; negate(): Tensor<DTpe>; addMultiplyScalar(factor: number, add: number): Tensor<DTpe>; powerScalar(power: number, factor: number): Tensor<DTpe>; sign(): Tensor<DTpe>; setValues(values: Tensor<DTpe>, starts: number[]): Tensor<DTpe>; add_impl(th: Tensor<DTpe>, tensor: Tensor<DTpe>, resultShape: readonly number[], alpha: number, beta: number): Tensor<DTpe>; subtract_impl(th: Tensor<DTpe>, tensor: Tensor<DTpe>, resultShape: readonly number[], alpha: number, beta: number): Tensor<DTpe>; multiply_impl(th: Tensor<DTpe>, tensor: Tensor<DTpe>, resultShape: readonly number[], alpha: number): Tensor<DTpe>; divide_impl(th: Tensor<DTpe>, tensor: Tensor<DTpe>, resultShape: readonly number[], alpha: number): Tensor<DTpe>; power_impl(th: Tensor<DTpe>, tensor: Tensor<DTpe>, resultShape: readonly number[]): Tensor<DTpe>; matMul(tensor: Tensor<DTpe>): Tensor<DTpe>; gemm_impl(b: Tensor<DTpe>, aTranspose: boolean, bTranspose: boolean, alpha: number, beta: number, c?: Tensor<DTpe>): Tensor<DTpe>; sum_impl(axes: number[], keepDims: boolean): Tensor<DTpe>; sumSquare_impl(axes: number[], keepDims: boolean): Tensor<DTpe>; reduceMean_impl(axes: number[], keepDims: boolean): Tensor<DTpe>; reduceMeanSquare_impl(axes: number[], keepDims: boolean): Tensor<DTpe>; protected reduceLogSum_impl(axes: number[], keepDims: boolean): Tensor<DTpe>; protected reduceLogSumExp_impl(axes: number[], keepDims: boolean): Tensor<DTpe>; product_impl(axes: number[], keepDims: boolean): Tensor<DTpe>; max_impl(axes: number[], keepDims: boolean): Tensor<DTpe>; min_impl(axes: number[], keepDims: boolean): Tensor<DTpe>; conv_impl(kernel: Tensor<DTpe>, dilations: number[], group: number, pads: number[], strides: number[], activation?: Activation, bias?: Tensor<DTpe>): Tensor<DTpe>; protected convTranspose_impl(kernel: Tensor<DTpe>, dilations: number[], group: number, pads: number[], strides: number[]): Tensor<DTpe>; averagePool_impl(kernelShape: number[], pads: number[], strides: number[], includePad: boolean): Tensor<DTpe>; reshape_impl(shape: number[], _copy: boolean): Tensor<DTpe>; concat(tensor: Tensor<DTpe>, axis: number): Tensor<DTpe>; transpose_impl(permutation: number[]): Tensor<DTpe>; clip(min?: number, max?: number): Tensor<DTpe>; clipBackward(grad: Tensor<DTpe>, min?: number, max?: number): Tensor<DTpe>; repeat(repeats: number[]): Tensor<DTpe>; expand(shape: readonly number[]): Tensor<DTpe>; pad_impl(pads: number[], mode: PadMode, value: number): Tensor<DTpe>; gather(axis: number, indices: CPUTensor<'uint32'>): Tensor<DTpe>; slice_impl(starts: number[], ends: number[], axes: number[], steps: number[]): Tensor<DTpe>; upsample(scales: number[]): Tensor<DTpe>; normalize(mean: Tensor<DTpe>, variance: Tensor<DTpe>, epsilon: number, scale: Tensor<DTpe>, bias: Tensor<DTpe>): Tensor<DTpe>; } export declare function gpuConstructor<DTpe extends DTypeGpu>(a: MemoryEntry, b: readonly number[], dtype: DTpe): GPUTensor<DTpe>;