UNPKG

@hoff97/tensor-js

Version:

PyTorch like deep learning inferrence library

94 lines (93 loc) 4.82 kB
import Tensor, { Activation, DType, PadMode, TensorValues } from '../../types'; export declare class CPUTensor<DTpe extends DType = 'float32'> extends Tensor<DTpe> { static range(start: number, limit: number, delta: number): CPUTensor<"float32">; /** * Array of values of the tensor in contiguous layout */ values: TensorValues[DTpe]; /** * Shape of the tensor */ shape: ReadonlyArray<number>; /** * Strides for all dimensions, ie. the step size per dimension in the contiguous layout */ strides: ReadonlyArray<number>; /** * Total number of entries in the tensor */ size: number; /** * If this tensor was already deleted */ deleted: boolean; constructor(shape: ReadonlyArray<number>, values?: TensorValues[DTpe] | number[], dtype?: DTpe); getValues(): Promise<TensorValues[DTpe]>; getShape(): readonly number[]; constantLike(value: number): Tensor<DTpe>; singleConstant(value: number): Tensor<DTpe>; cast<DTpe2 extends DType>(dtype: DTpe2): Tensor<DTpe2>; delete(): void; copy(newShape?: number[]): Tensor<DTpe>; get(index: number[] | number): number; set(index: number[] | number, value: number): void; setValues(values: Tensor<DTpe>, starts: number[]): Tensor<DTpe>; exp(): Tensor<DTpe>; log(): Tensor<DTpe>; sqrt(): Tensor<DTpe>; abs(): Tensor<DTpe>; sin(): Tensor<DTpe>; cos(): Tensor<DTpe>; tan(): Tensor<DTpe>; asin(): Tensor<DTpe>; acos(): Tensor<DTpe>; atan(): Tensor<DTpe>; sinh(): Tensor<DTpe>; cosh(): Tensor<DTpe>; tanh(): Tensor<DTpe>; asinh(): Tensor<DTpe>; acosh(): Tensor<DTpe>; atanh(): Tensor<DTpe>; floor(): Tensor<DTpe>; ceil(): Tensor<DTpe>; round(): Tensor<DTpe>; negate(): Tensor<DTpe>; powerScalar(power: number, factor: number): Tensor<DTpe>; multiplyScalar(value: number): Tensor<DTpe>; addScalar(value: number): Tensor<DTpe>; addMultiplyScalar(factor: number, add: number): Tensor<DTpe>; sign(): Tensor<DTpe>; clip(min?: number, max?: number): Tensor<DTpe>; clipBackward(grad: Tensor<DTpe>, min?: number, max?: number): Tensor<DTpe>; sigmoid(): Tensor<DTpe>; hardSigmoid(alpha: number, beta: number): Tensor<DTpe>; add_impl(th: Tensor<DTpe>, tensor: Tensor<DTpe>, resultShape: readonly number[], alpha: number, beta: number): Tensor<DTpe>; subtract_impl(th: Tensor<DTpe>, tensor: Tensor<DTpe>, resultShape: readonly number[], alpha: number, beta: number): Tensor<DTpe>; multiply_impl(th: Tensor<DTpe>, tensor: Tensor<DTpe>, resultShape: readonly number[], alpha: number): Tensor<DTpe>; divide_impl(th: Tensor<DTpe>, tensor: Tensor<DTpe>, resultShape: readonly number[], alpha: number): Tensor<DTpe>; power_impl(th: Tensor<DTpe>, tensor: Tensor<DTpe>, resultShape: readonly number[]): Tensor<DTpe>; matMul(tensor: Tensor<DTpe>): Tensor<DTpe>; gemm_impl(b: Tensor<DTpe>, aTranspose: boolean, bTranspose: boolean, alpha: number, beta: number, c?: Tensor<DTpe>): Tensor<DTpe>; sum_impl(axes: number[], keepDims: boolean): Tensor<DTpe>; sumSquare_impl(axes: number[], keepDims: boolean): Tensor<DTpe>; product_impl(axes: number[], keepDims: boolean): Tensor<DTpe>; max_impl(axes: number[], keepDims: boolean): Tensor<DTpe>; min_impl(axes: number[], keepDims: boolean): Tensor<DTpe>; reduceMean_impl(axes: number[], keepDims: boolean): Tensor<DTpe>; reduceMeanSquare_impl(axes: number[], keepDims: boolean): Tensor<DTpe>; reduceLogSum_impl(axes: number[], keepDims: boolean): Tensor<DTpe>; reduceLogSumExp_impl(axes: number[], keepDims: boolean): Tensor<DTpe>; conv_impl(kernel: Tensor<DTpe>, dilations: number[], group: number, pads: number[], strides: number[], activation: Activation, bias?: Tensor<DTpe>): Tensor<DTpe>; protected convTranspose_impl(kernel: Tensor<DTpe>, dilations: number[], group: number, pads: number[], strides: number[]): Tensor<DTpe>; pad_impl(pads: number[], mode: PadMode, value: number): Tensor<DTpe>; averagePool_impl(kernelShape: number[], pads: number[], strides: number[], includePad: boolean): Tensor<DTpe>; reshape_impl(shape: number[], copy: boolean): Tensor<DTpe>; concat(tensor: Tensor<DTpe>, axis: number): Tensor<DTpe>; transpose_impl(permutation: number[]): Tensor<DTpe>; repeat(repeats: number[]): Tensor<DTpe>; expand(shape: readonly number[]): Tensor<DTpe>; gather(axis: number, indices: CPUTensor<'uint32'>): Tensor<DTpe>; slice_impl(starts: number[], ends: number[], axes: number[], steps: number[]): Tensor<DTpe>; upsample(scales: number[]): Tensor<DTpe>; normalize(mean: Tensor<DTpe>, variance: Tensor<DTpe>, epsilon: number, scale: Tensor<DTpe>, bias: Tensor<DTpe>): Tensor<DTpe>; }