UNPKG

@hoff97/tensor-js

Version:

PyTorch like deep learning inferrence library

24 lines 753 B
import { CPUTensor } from '../../../tensor/cpu/tensor'; /** * Calculates the sparse-dense matrix product, assuming that a * has zero dense dimensions. * * The result is a dense CPU tensor */ export function sparseDenseMatMulCPU(a, b) { const M = a.shape[0]; const O = b.shape[1]; const result = new CPUTensor([M, O], undefined, b.dtype); const indices = a.indices; const values = a.values; for (let i = 0; i < a.nnz; i++) { const m = indices.get(i * 2); const n = indices.get(i * 2 + 1); const v = values.get(i); for (let o = 0; o < O; o++) { result.set(m * O + o, result.get(m * O + o) + v * b.get(n * O + o)); } } return result; } //# sourceMappingURL=cpu.js.map