UNPKG

@hoff97/tensor-js

Version:

PyTorch like deep learning inferrence library

45 lines (44 loc) 1.63 kB
import { DTypeGpu, GPUTensorConstructor, GPUTensorI } from '../../../tensor/gpu/interface'; import { GPUMemoryAllocator } from '../../../tensor/gpu/memory'; import { Input, Operation } from '../operation'; export interface NormalizeOpInfo { shapeX?: readonly number[]; widthX?: number; heightX?: number; shapeMean?: readonly number[]; widthMean?: number; heightMean?: number; shapeVariance?: readonly number[]; widthVariance?: number; heightVariance?: number; shapeScale?: readonly number[]; widthScale?: number; heightScale?: number; shapeBias?: readonly number[]; widthBias?: number; heightBias?: number; shapeOutput?: readonly number[]; widthOutput?: number; heightOutput?: number; epsilon?: number; } export interface NormalizeOpInput { X: GPUTensorI; Mean: GPUTensorI; Variance: GPUTensorI; epsilon: number; Scale: GPUTensorI; Bias: GPUTensorI; } export declare class NormalizeOperation<GPUTensor extends GPUTensorI> extends Operation<GPUTensor, NormalizeOpInfo, NormalizeOpInput> { constructor(tensorConstructor: GPUTensorConstructor<GPUTensor>, dtype: DTypeGpu, allocator?: GPUMemoryAllocator); getVariables(): string; getUniformAttrs(): Input[]; getFragmentShader(info: NormalizeOpInfo): string; getOutputShape(input: NormalizeOpInput): readonly number[]; getTextureNames(): string[]; calc(input: NormalizeOpInput): GPUTensor; compile(info: NormalizeOpInfo): void; getCompilationInfo(input: NormalizeOpInput): NormalizeOpInfo; getInputInfoString(input: NormalizeOpInput): string; }