UNPKG

@hoff97/tensor-js

Version:

PyTorch like deep learning inferrence library

44 lines (43 loc) 1.63 kB
import { DTypeGpu, GPUTensorConstructor, GPUTensorI } from '../../../tensor/gpu/interface'; import { GPUMemoryAllocator } from '../../../tensor/gpu/memory'; import { Input, Operation } from '../operation'; export interface ConvTransposeInfo { shapeX?: readonly number[]; widthX?: number; heightX?: number; shapeW?: readonly number[]; widthW?: number; heightW?: number; shapeOutput?: readonly number[]; widthOutput?: number; heightOutput?: number; pads?: readonly number[]; dilations?: readonly number[]; strides?: readonly number[]; CG?: number; kernelSize?: number; dataRank?: number; C?: number; } export interface ConvTransposeInput { X: GPUTensorI; W: GPUTensorI; pads: readonly number[]; dilations: readonly number[]; strides: readonly number[]; } export declare class ConvTransposeOperation<GPUTensor extends GPUTensorI> extends Operation<GPUTensor, ConvTransposeInfo, ConvTransposeInput> { protected maxIterations: number; constructor(tensorConstructor: GPUTensorConstructor<GPUTensor>, dtype: DTypeGpu, allocator?: GPUMemoryAllocator); updateInputIx(): string; getMainBody(): string; getVariables(): string; getFragmentShader(info: ConvTransposeInfo): string; getTextureNames(): string[]; getUniformAttrs(): Input[]; calc(input: ConvTransposeInput): GPUTensor; getOutputShape(input: ConvTransposeInput): readonly number[]; compile(info: ConvTransposeInfo): void; getCompilationInfo(input: ConvTransposeInput): ConvTransposeInfo; getInputInfoString(input: ConvTransposeInput): string; }