UNPKG

@hoff97/tensor-js

Version:

PyTorch like deep learning inferrence library

40 lines (39 loc) 3.9 kB
import { CPUTensor } from '../../tensor/cpu/tensor'; import { DType } from '../../types'; declare type UnaryOperator = (o: number) => number; declare type BinaryOperator = (o1: number, o2: number) => number; export declare function positionWiseUnaryOp<DTpe extends DType>(a: CPUTensor<DTpe>, op: UnaryOperator): CPUTensor<DTpe>; export declare function positionWiseBinaryOp<DTpe extends DType>(a: CPUTensor<DTpe>, b: CPUTensor<DTpe>, op: BinaryOperator, resultShape: readonly number[]): CPUTensor<DTpe>; export declare function exp<DTpe extends DType>(a: CPUTensor<DTpe>): CPUTensor<DTpe>; export declare function log<DTpe extends DType>(a: CPUTensor<DTpe>): CPUTensor<DTpe>; export declare function sqrt<DTpe extends DType>(a: CPUTensor<DTpe>): CPUTensor<DTpe>; export declare function abs<DTpe extends DType>(a: CPUTensor<DTpe>): CPUTensor<DTpe>; export declare function sin<DTpe extends DType>(a: CPUTensor<DTpe>): CPUTensor<DTpe>; export declare function cos<DTpe extends DType>(a: CPUTensor<DTpe>): CPUTensor<DTpe>; export declare function tan<DTpe extends DType>(a: CPUTensor<DTpe>): CPUTensor<DTpe>; export declare function asin<DTpe extends DType>(a: CPUTensor<DTpe>): CPUTensor<DTpe>; export declare function acos<DTpe extends DType>(a: CPUTensor<DTpe>): CPUTensor<DTpe>; export declare function atan<DTpe extends DType>(a: CPUTensor<DTpe>): CPUTensor<DTpe>; export declare function sinh<DTpe extends DType>(a: CPUTensor<DTpe>): CPUTensor<DTpe>; export declare function cosh<DTpe extends DType>(a: CPUTensor<DTpe>): CPUTensor<DTpe>; export declare function tanh<DTpe extends DType>(a: CPUTensor<DTpe>): CPUTensor<DTpe>; export declare function asinh<DTpe extends DType>(a: CPUTensor<DTpe>): CPUTensor<DTpe>; export declare function acosh<DTpe extends DType>(a: CPUTensor<DTpe>): CPUTensor<DTpe>; export declare function atanh<DTpe extends DType>(a: CPUTensor<DTpe>): CPUTensor<DTpe>; export declare function floor<DTpe extends DType>(a: CPUTensor<DTpe>): CPUTensor<DTpe>; export declare function ceil<DTpe extends DType>(a: CPUTensor<DTpe>): CPUTensor<DTpe>; export declare function round<DTpe extends DType>(a: CPUTensor<DTpe>): CPUTensor<DTpe>; export declare function sign<DTpe extends DType>(a: CPUTensor<DTpe>): CPUTensor<DTpe>; export declare function negate<DTpe extends DType>(a: CPUTensor<DTpe>): CPUTensor<DTpe>; export declare function powerScalar<DTpe extends DType>(a: CPUTensor<DTpe>, power: number, factor: number): CPUTensor<DTpe>; export declare function addMultiplyScalar<DTpe extends DType>(a: CPUTensor<DTpe>, factor: number, add: number): CPUTensor<DTpe>; export declare function sigmoid<DTpe extends DType>(a: CPUTensor<DTpe>): CPUTensor<DTpe>; export declare function hardSigmoid<DTpe extends DType>(a: CPUTensor<DTpe>, alpha: number, beta: number): CPUTensor<DTpe>; export declare function clip<DTpe extends DType>(a: CPUTensor<DTpe>, min?: number, max?: number): CPUTensor<DTpe>; export declare function add<DTpe extends DType>(a: CPUTensor<DTpe>, b: CPUTensor<DTpe>, resultShape: readonly number[], alpha: number, beta: number): CPUTensor<DTpe>; export declare function subtract<DTpe extends DType>(a: CPUTensor<DTpe>, b: CPUTensor<DTpe>, resultShape: readonly number[], alpha: number, beta: number): CPUTensor<DTpe>; export declare function multiply<DTpe extends DType>(a: CPUTensor<DTpe>, b: CPUTensor<DTpe>, resultShape: readonly number[], alpha: number): CPUTensor<DTpe>; export declare function divide<DTpe extends DType>(a: CPUTensor<DTpe>, b: CPUTensor<DTpe>, resultShape: readonly number[], alpha: number): CPUTensor<DTpe>; export declare function power<DTpe extends DType>(a: CPUTensor<DTpe>, b: CPUTensor<DTpe>, resultShape: readonly number[]): CPUTensor<DTpe>; export declare function clipBackward<DTpe extends DType>(value: CPUTensor<DTpe>, grad: CPUTensor<DTpe>, resultShape: readonly number[], min?: number, max?: number): CPUTensor<DTpe>; export {};