UNPKG

@hoff97/tensor-js

Version:

PyTorch like deep learning inferrence library

55 lines 2.38 kB
import { CPUTensor } from '../../tensor/cpu/tensor'; import { getSize, incrementIndex } from '../../util/shape'; import { outputDimsSize } from '../util/conv'; export function averagePool(x, kernelShape, pads, strides, includePad) { const N = x.shape[0]; const C = x.shape[1]; const D = x.shape.slice(2); const dataRank = D.length; const kernelSize = getSize(kernelShape); const R = outputDimsSize(D, kernelShape, pads.slice(0, pads.length / 2), pads.slice(pads.length / 2), new Array(dataRank).fill(1), strides); const outputSize = getSize(R); let outputShape = [N, C]; outputShape = outputShape.concat(R); const Y = new CPUTensor(outputShape, undefined, x.dtype); // Iterate over all batches for (let n = 0; n < N; n++) { // Iterate over all output channels for (let c = 0; c < C; c++) { const outputIndices = new Array(R.length).fill(0); outputIndices.unshift(n, c); for (let oIx = 0; oIx < outputSize; oIx++) { let result = 0; const kernelIndices = new Array(R.length).fill(0); let count = 0; for (let kIx = 0; kIx < kernelSize; kIx++) { const inputIx = [n, c]; let skip = false; for (let axis = 0; axis < dataRank; axis++) { const stride = strides.length === 0 ? 1 : strides[axis]; const pad = pads.length === 0 ? 0 : pads[axis]; const ix = outputIndices[axis + 2] * stride - pad + kernelIndices[axis]; if (ix < 0 || ix >= D[axis]) { skip = true; break; } inputIx.push(ix); } if (!skip) { const Xi = x.get(inputIx); result += Xi; } if (!skip || includePad) { count += 1; } incrementIndex(kernelIndices, kernelShape); } result = result / count; Y.set(outputIndices, result); incrementIndex(outputIndices, Y.shape); } } } return Y; } //# sourceMappingURL=averagePool.js.map