UNPKG

@hoff97/tensor-js

Version:

PyTorch like deep learning inferrence library

24 lines (23 loc) 1.03 kB
import Tensor from '../../types'; import { NodeId } from '../model'; import { OnnxNode } from '../node'; import { Constants, OnnxModelI } from '../types'; export declare abstract class Optimization { /** * Finds possible places in the graph for application * * @param graph The graph to search for optimization applications * * @Returns a list of possible applications * Each application consists of a list of nodes that will be replaced */ abstract findApplications(model: OnnxModelI): NodeId[][]; abstract apply(nodes: OnnxNode[], resolveConstant: (name: string) => Tensor<any> | undefined, constants: Constants, onnxVersion: number): OnnxNode; } export declare abstract class SequenceOptimization extends Optimization { protected nodeTypes: string[]; constructor(nodeTypes: string[]); findApplications(model: OnnxModelI): NodeId[][]; checkApplication(model: OnnxModelI, nodeId: string): string[] | undefined; canApply(nodes: OnnxNode[]): boolean; }