@hoff97/tensor-js
Version:
PyTorch like deep learning inferrence library
21 lines (20 loc) • 1.18 kB
TypeScript
import { Mode } from '../../../model/module';
import Tensor, { DType } from '../../../types';
import { Attributes, Constants } from '../../types';
import { UnaryNode } from './unaryNode';
export declare class SinNode extends UnaryNode {
constructor(attributes: Attributes, inputs: string[], outputs: string[], constants: Constants, onnxVersion: number, mode: Mode);
compute<DTpe extends DType>(x: Tensor<DTpe>): Tensor<DTpe>;
}
export declare class ASinNode extends UnaryNode {
constructor(attributes: Attributes, inputs: string[], outputs: string[], constants: Constants, onnxVersion: number, mode: Mode);
compute<DTpe extends DType>(x: Tensor<DTpe>): Tensor<DTpe>;
}
export declare class SinHNode extends UnaryNode {
constructor(attributes: Attributes, inputs: string[], outputs: string[], constants: Constants, onnxVersion: number, mode: Mode);
compute<DTpe extends DType>(x: Tensor<DTpe>): Tensor<DTpe>;
}
export declare class ASinHNode extends UnaryNode {
constructor(attributes: Attributes, inputs: string[], outputs: string[], constants: Constants, onnxVersion: number, mode: Mode);
compute<DTpe extends DType>(x: Tensor<DTpe>): Tensor<DTpe>;
}