UNPKG

@hoff97/tensor-js

Version:

PyTorch like deep learning inferrence library

38 lines 1.78 kB
var __awaiter = (this && this.__awaiter) || function (thisArg, _arguments, P, generator) { function adopt(value) { return value instanceof P ? value : new P(function (resolve) { resolve(value); }); } return new (P || (P = Promise))(function (resolve, reject) { function fulfilled(value) { try { step(generator.next(value)); } catch (e) { reject(e); } } function rejected(value) { try { step(generator["throw"](value)); } catch (e) { reject(e); } } function step(result) { result.done ? resolve(result.value) : adopt(result.value).then(fulfilled, rejected); } step((generator = generator.apply(thisArg, _arguments || [])).next()); }); }; import { CPUTensor } from '../../tensor/cpu/tensor'; import { OnnxNode } from '../node'; export class TileNode extends OnnxNode { constructor(attributes, inputs, outputs, constants, onnxVersion, mode) { super(attributes, inputs, outputs, constants, onnxVersion, mode); } forward(inputs) { return __awaiter(this, void 0, void 0, function* () { const x = inputs[0]; const repeats = inputs[1]; if (!(repeats instanceof CPUTensor)) { throw new Error('Tile only works with CPU tensor as repeats'); } if (this.onnxVersion < 13 && this.onnxVersion >= 6) { const _repeats = new Array(repeats.size); for (let i = 0; i < repeats.size; i++) { _repeats[i] = repeats.get(i); } return [x.repeat(_repeats)]; } throw new Error(`Tile with onnx version ${this.onnxVersion} not yet implemented`); }); } getType() { return 'Tile'; } delete() { } } //# sourceMappingURL=tile.js.map