UNPKG

@hoff97/tensor-js

Version:

PyTorch like deep learning inferrence library

46 lines 2.27 kB
var __awaiter = (this && this.__awaiter) || function (thisArg, _arguments, P, generator) { function adopt(value) { return value instanceof P ? value : new P(function (resolve) { resolve(value); }); } return new (P || (P = Promise))(function (resolve, reject) { function fulfilled(value) { try { step(generator.next(value)); } catch (e) { reject(e); } } function rejected(value) { try { step(generator["throw"](value)); } catch (e) { reject(e); } } function step(result) { result.done ? resolve(result.value) : adopt(result.value).then(fulfilled, rejected); } step((generator = generator.apply(thisArg, _arguments || [])).next()); }); }; import { OnnxNode } from '../node'; export class SliceNode extends OnnxNode { constructor(attributes, inputs, outputs, constants, onnxVersion, mode) { super(attributes, inputs, outputs, constants, onnxVersion, mode); this.axes = this.getAttributeInts('axes'); this.starts = this.getAttributeInts('starts'); this.ends = this.getAttributeInts('ends'); } forward(inputs) { return __awaiter(this, void 0, void 0, function* () { if (this.onnxVersion < 10) { if (this.starts === undefined || this.ends === undefined) { throw new Error('Slice with onnx version < 10 needs starts and ends defined as attributes'); } const x = inputs[0]; return [x.slice(this.starts, this.ends, this.axes)]; } else { const x = inputs[0]; const starts = inputs[1]; const ends = inputs[2]; const axes = inputs[3]; const steps = inputs[4]; const startValues = yield this.toValues(starts); const endValues = yield this.toValues(ends); const axesValues = axes !== undefined ? yield this.toValues(axes) : undefined; const stepValues = steps !== undefined ? yield this.toValues(steps) : undefined; return [x.slice(startValues, endValues, axesValues, stepValues)]; } }); } getType() { return 'Slice'; } delete() { } } //# sourceMappingURL=slice.js.map