UNPKG

@hoff97/tensor-js

Version:

PyTorch like deep learning inferrence library

34 lines 1.51 kB
var __awaiter = (this && this.__awaiter) || function (thisArg, _arguments, P, generator) { function adopt(value) { return value instanceof P ? value : new P(function (resolve) { resolve(value); }); } return new (P || (P = Promise))(function (resolve, reject) { function fulfilled(value) { try { step(generator.next(value)); } catch (e) { reject(e); } } function rejected(value) { try { step(generator["throw"](value)); } catch (e) { reject(e); } } function step(result) { result.done ? resolve(result.value) : adopt(result.value).then(fulfilled, rejected); } step((generator = generator.apply(thisArg, _arguments || [])).next()); }); }; import { OnnxNode } from '../node'; export class PReluNode extends OnnxNode { constructor(attributes, inputs, outputs, constants, onnxVersion, mode) { super(attributes, inputs, outputs, constants, onnxVersion, mode); } forward(inputs) { return __awaiter(this, void 0, void 0, function* () { const tensor = inputs[0]; const slope = inputs[1]; const below = tensor.clip(undefined, 0); const above = tensor.clip(0, undefined); const belowRes = below.multiply(slope); below.delete(); const result = belowRes.add(above); belowRes.delete(); above.delete(); return [result]; }); } delete() { } getType() { return 'PRElu'; } } //# sourceMappingURL=prelu.js.map