@hoff97/tensor-js
Version:
PyTorch like deep learning inferrence library
41 lines • 1.84 kB
JavaScript
var __awaiter = (this && this.__awaiter) || function (thisArg, _arguments, P, generator) {
function adopt(value) { return value instanceof P ? value : new P(function (resolve) { resolve(value); }); }
return new (P || (P = Promise))(function (resolve, reject) {
function fulfilled(value) { try { step(generator.next(value)); } catch (e) { reject(e); } }
function rejected(value) { try { step(generator["throw"](value)); } catch (e) { reject(e); } }
function step(result) { result.done ? resolve(result.value) : adopt(result.value).then(fulfilled, rejected); }
step((generator = generator.apply(thisArg, _arguments || [])).next());
});
};
import { OnnxNode } from '../../node';
export class MeanNode extends OnnxNode {
constructor(attributes, inputs, outputs, constants, onnxVersion, mode) {
super(attributes, inputs, outputs, constants, onnxVersion, mode);
}
forward(inputs) {
return __awaiter(this, void 0, void 0, function* () {
if (inputs.length > 2) {
// This logging seems to slow down the operation more than the operation itself
//console.warn(`Sum with more than 2 tensors is currently slow. Doing concat with ${inputs.length} tensors`);
}
let result = inputs[0];
for (let i = 1; i < inputs.length; i++) {
const newRes = result.add(inputs[i]);
if (i > 1) {
result.delete();
}
result = newRes;
}
const mean = result.multiplyScalar(1 / inputs.length);
if (inputs.length > 2) {
result.delete();
}
return [mean];
});
}
getType() {
return 'Mean';
}
delete() { }
}
//# sourceMappingURL=mean.js.map