UNPKG

@hoff97/tensor-js

Version:

PyTorch like deep learning inferrence library

34 lines 1.6 kB
var __awaiter = (this && this.__awaiter) || function (thisArg, _arguments, P, generator) { function adopt(value) { return value instanceof P ? value : new P(function (resolve) { resolve(value); }); } return new (P || (P = Promise))(function (resolve, reject) { function fulfilled(value) { try { step(generator.next(value)); } catch (e) { reject(e); } } function rejected(value) { try { step(generator["throw"](value)); } catch (e) { reject(e); } } function step(result) { result.done ? resolve(result.value) : adopt(result.value).then(fulfilled, rejected); } step((generator = generator.apply(thisArg, _arguments || [])).next()); }); }; import { OnnxNode } from '../node'; export class GemmNode extends OnnxNode { constructor(attributes, inputs, outputs, constants, onnxVersion, mode) { super(attributes, inputs, outputs, constants, onnxVersion, mode); this.alpha = this.getAttributeFloat('alpha') || 1.0; this.beta = this.getAttributeFloat('beta') || 1.0; const transA = this.getAttributeInt('transA'); const transB = this.getAttributeInt('transB'); this.transA = transA === 1; this.transB = transB === 1; } forward(inputs) { return __awaiter(this, void 0, void 0, function* () { const a = inputs[0]; const b = inputs[1]; const c = inputs[2]; return [a.gemm(b, this.transA, this.transB, this.alpha, c, this.beta)]; }); } getType() { return 'Gemm'; } delete() { } } //# sourceMappingURL=gemm.js.map