UNPKG

@hoff97/tensor-js

Version:

PyTorch like deep learning inferrence library

42 lines 1.83 kB
var __awaiter = (this && this.__awaiter) || function (thisArg, _arguments, P, generator) { function adopt(value) { return value instanceof P ? value : new P(function (resolve) { resolve(value); }); } return new (P || (P = Promise))(function (resolve, reject) { function fulfilled(value) { try { step(generator.next(value)); } catch (e) { reject(e); } } function rejected(value) { try { step(generator["throw"](value)); } catch (e) { reject(e); } } function step(result) { result.done ? resolve(result.value) : adopt(result.value).then(fulfilled, rejected); } step((generator = generator.apply(thisArg, _arguments || [])).next()); }); }; import { OnnxNode } from '../node'; export class ClipNode extends OnnxNode { constructor(attributes, inputs, outputs, constants, onnxVersion, mode) { super(attributes, inputs, outputs, constants, onnxVersion, mode); if (onnxVersion < 11) { //@ts-ignore this.min = this.getAttributeFloat('min'); //@ts-ignore this.max = this.getAttributeFloat('max'); } } forward(inputs) { return __awaiter(this, void 0, void 0, function* () { const x = inputs[0]; if (this.onnxVersion < 11) { return [x.clip(this.min, this.max)]; } else { const min = inputs.length > 1 ? inputs[1] : undefined; const max = inputs.length > 2 ? inputs[2] : undefined; if (min === undefined && max === undefined) { return [x.copy()]; } throw new Error('Clip with onnx version >= 11 not yet implemented'); } }); } getType() { return 'Clip'; } delete() { } } //# sourceMappingURL=clip.js.map