UNPKG

@hoff97/tensor-js

Version:

PyTorch like deep learning inferrence library

31 lines (30 loc) 1.38 kB
import { onnx } from 'onnx-proto'; import { Tensor } from '../library'; import { Mode, Module } from '../model/module'; import { DType } from '../types'; import { Attributes, Constants } from './types'; export declare abstract class OnnxNode extends Module { protected onnxVersion: number; inputs: string[]; outputs: string[]; variableInputs: number; attributes: { [name: string]: onnx.IAttributeProto; }; constructor(attributes: Attributes, inputs: string[], outputs: string[], constants: Constants, onnxVersion: number, mode: Mode); initialize(resolveConstant: (name: string) => Tensor<any> | undefined): void; getAttribute(name: string): onnx.IAttributeProto; getAttributeString(name: string): string | undefined; getAttributeInts(name: string): number[] | undefined; getAttributeInt(name: string): number | null | undefined; getAttributeFloat(name: string): number | null | undefined; getAttributeFloats(name: string): number[] | null | undefined; getAttributeTensor(name: string): onnx.ITensorProto | null | undefined; toValues<DTpe extends DType>(tensor: Tensor<DTpe>): Promise<number[]>; toCPU(): Promise<void>; toWASM(): Promise<void>; toGPU(): Promise<void>; abstract forward(inputs: Tensor<any>[]): Promise<Tensor<any>[]>; abstract getType(): string; abstract delete(): void; }