UNPKG

@hoff97/tensor-js

Version:

PyTorch like deep learning inferrence library

35 lines 1.48 kB
// Attribute types export const ATTRIBUTE_UNDEFINED = 0; export const ATTRIBUTE_FLOAT = 1; // Float32 export const ATTRIBUTE_INT = 2; // Int64 export const ATTRIBUTE_STRING = 3; export const ATTRIBUTE_TENSOR = 4; export const ATTRIBUTE_GRAPH = 5; export const ATTRIBUTE_SPARSE_TENSOR = 11; export const ATTRIBUTE_FLOATS = 6; export const ATTRIBUTE_INTS = 7; export const ATTRIBUTE_STRINGS = 8; export const ATTRIBUTE_TENSORS = 9; export const ATTRIBUTE_GRAPHS = 10; export const ATTRIBUTE_SPARSE_TENSORS = 12; // Tensor types export const TENSOR_FLOAT = 1; // float (32 bits) export const TENSOR_UINT8 = 2; // uint8_t export const TENSOR_INT8 = 3; // int8_t export const TENSOR_UINT16 = 4; // uint16_t export const TENSOR_INT16 = 5; // int16_t export const TENSOR_INT32 = 6; // int32_t export const TENSOR_INT64 = 7; // int64_t export const TENSOR_STRING = 8; // string export const TENSOR_BOOL = 9; // bool export const TENSOR_FLOAT16 = 10; export const TENSOR_DOUBLE = 11; export const TENSOR_UINT32 = 12; export const TENSOR_UINT64 = 13; export const TENSOR_COMPLEX64 = 14; // complex with float32 real and imaginary components export const TENSOR_COMPLEX128 = 15; // complex with float64 real and imaginary components // Non-IEEE floating-point format based on IEEE754 single-precision // floating-point number truncated to 16 bits. // This format has 1 sign bit, 8 exponent bits, and 7 mantissa bits. export const TENSOR_BFLOAT16 = 16; //# sourceMappingURL=definitions.js.map