UNPKG

@hocuspocus/common

Version:

shared code for multiple Hocuspocus packages

1 lines 63.8 kB
{"version":3,"file":"hocuspocus-common.cjs","sources":["../../../node_modules/lib0/math.js","../../../node_modules/lib0/binary.js","../../../node_modules/lib0/number.js","../../../node_modules/lib0/string.js","../../../node_modules/lib0/encoding.js","../../../node_modules/lib0/error.js","../../../node_modules/lib0/decoding.js","../src/auth.ts","../src/CloseEvents.ts","../src/awarenessStatesToArray.ts","../src/types.ts"],"sourcesContent":["/**\n * Common Math expressions.\n *\n * @module math\n */\n\nexport const floor = Math.floor\nexport const ceil = Math.ceil\nexport const abs = Math.abs\nexport const imul = Math.imul\nexport const round = Math.round\nexport const log10 = Math.log10\nexport const log2 = Math.log2\nexport const log = Math.log\nexport const sqrt = Math.sqrt\n\n/**\n * @function\n * @param {number} a\n * @param {number} b\n * @return {number} The sum of a and b\n */\nexport const add = (a, b) => a + b\n\n/**\n * @function\n * @param {number} a\n * @param {number} b\n * @return {number} The smaller element of a and b\n */\nexport const min = (a, b) => a < b ? a : b\n\n/**\n * @function\n * @param {number} a\n * @param {number} b\n * @return {number} The bigger element of a and b\n */\nexport const max = (a, b) => a > b ? a : b\n\nexport const isNaN = Number.isNaN\n\nexport const pow = Math.pow\n/**\n * Base 10 exponential function. Returns the value of 10 raised to the power of pow.\n *\n * @param {number} exp\n * @return {number}\n */\nexport const exp10 = exp => Math.pow(10, exp)\n\nexport const sign = Math.sign\n\n/**\n * @param {number} n\n * @return {boolean} Wether n is negative. This function also differentiates between -0 and +0\n */\nexport const isNegativeZero = n => n !== 0 ? n < 0 : 1 / n < 0\n","/* eslint-env browser */\n\n/**\n * Binary data constants.\n *\n * @module binary\n */\n\n/**\n * n-th bit activated.\n *\n * @type {number}\n */\nexport const BIT1 = 1\nexport const BIT2 = 2\nexport const BIT3 = 4\nexport const BIT4 = 8\nexport const BIT5 = 16\nexport const BIT6 = 32\nexport const BIT7 = 64\nexport const BIT8 = 128\nexport const BIT9 = 256\nexport const BIT10 = 512\nexport const BIT11 = 1024\nexport const BIT12 = 2048\nexport const BIT13 = 4096\nexport const BIT14 = 8192\nexport const BIT15 = 16384\nexport const BIT16 = 32768\nexport const BIT17 = 65536\nexport const BIT18 = 1 << 17\nexport const BIT19 = 1 << 18\nexport const BIT20 = 1 << 19\nexport const BIT21 = 1 << 20\nexport const BIT22 = 1 << 21\nexport const BIT23 = 1 << 22\nexport const BIT24 = 1 << 23\nexport const BIT25 = 1 << 24\nexport const BIT26 = 1 << 25\nexport const BIT27 = 1 << 26\nexport const BIT28 = 1 << 27\nexport const BIT29 = 1 << 28\nexport const BIT30 = 1 << 29\nexport const BIT31 = 1 << 30\nexport const BIT32 = 1 << 31\n\n/**\n * First n bits activated.\n *\n * @type {number}\n */\nexport const BITS0 = 0\nexport const BITS1 = 1\nexport const BITS2 = 3\nexport const BITS3 = 7\nexport const BITS4 = 15\nexport const BITS5 = 31\nexport const BITS6 = 63\nexport const BITS7 = 127\nexport const BITS8 = 255\nexport const BITS9 = 511\nexport const BITS10 = 1023\nexport const BITS11 = 2047\nexport const BITS12 = 4095\nexport const BITS13 = 8191\nexport const BITS14 = 16383\nexport const BITS15 = 32767\nexport const BITS16 = 65535\nexport const BITS17 = BIT18 - 1\nexport const BITS18 = BIT19 - 1\nexport const BITS19 = BIT20 - 1\nexport const BITS20 = BIT21 - 1\nexport const BITS21 = BIT22 - 1\nexport const BITS22 = BIT23 - 1\nexport const BITS23 = BIT24 - 1\nexport const BITS24 = BIT25 - 1\nexport const BITS25 = BIT26 - 1\nexport const BITS26 = BIT27 - 1\nexport const BITS27 = BIT28 - 1\nexport const BITS28 = BIT29 - 1\nexport const BITS29 = BIT30 - 1\nexport const BITS30 = BIT31 - 1\n/**\n * @type {number}\n */\nexport const BITS31 = 0x7FFFFFFF\n/**\n * @type {number}\n */\nexport const BITS32 = 0xFFFFFFFF\n","/**\n * Utility helpers for working with numbers.\n *\n * @module number\n */\n\nimport * as math from './math.js'\nimport * as binary from './binary.js'\n\nexport const MAX_SAFE_INTEGER = Number.MAX_SAFE_INTEGER\nexport const MIN_SAFE_INTEGER = Number.MIN_SAFE_INTEGER\n\nexport const LOWEST_INT32 = 1 << 31\nexport const HIGHEST_INT32 = binary.BITS31\nexport const HIGHEST_UINT32 = binary.BITS32\n\n/* c8 ignore next */\nexport const isInteger = Number.isInteger || (num => typeof num === 'number' && isFinite(num) && math.floor(num) === num)\nexport const isNaN = Number.isNaN\nexport const parseInt = Number.parseInt\n\n/**\n * Count the number of \"1\" bits in an unsigned 32bit number.\n *\n * Super fun bitcount algorithm by Brian Kernighan.\n *\n * @param {number} n\n */\nexport const countBits = n => {\n n &= binary.BITS32\n let count = 0\n while (n) {\n n &= (n - 1)\n count++\n }\n return count\n}\n","import * as array from './array.js'\n\n/**\n * Utility module to work with strings.\n *\n * @module string\n */\n\nexport const fromCharCode = String.fromCharCode\nexport const fromCodePoint = String.fromCodePoint\n\n/**\n * The largest utf16 character.\n * Corresponds to Uint8Array([255, 255]) or charcodeof(2x2^8)\n */\nexport const MAX_UTF16_CHARACTER = fromCharCode(65535)\n\n/**\n * @param {string} s\n * @return {string}\n */\nconst toLowerCase = s => s.toLowerCase()\n\nconst trimLeftRegex = /^\\s*/g\n\n/**\n * @param {string} s\n * @return {string}\n */\nexport const trimLeft = s => s.replace(trimLeftRegex, '')\n\nconst fromCamelCaseRegex = /([A-Z])/g\n\n/**\n * @param {string} s\n * @param {string} separator\n * @return {string}\n */\nexport const fromCamelCase = (s, separator) => trimLeft(s.replace(fromCamelCaseRegex, match => `${separator}${toLowerCase(match)}`))\n\n/**\n * Compute the utf8ByteLength\n * @param {string} str\n * @return {number}\n */\nexport const utf8ByteLength = str => unescape(encodeURIComponent(str)).length\n\n/**\n * @param {string} str\n * @return {Uint8Array}\n */\nexport const _encodeUtf8Polyfill = str => {\n const encodedString = unescape(encodeURIComponent(str))\n const len = encodedString.length\n const buf = new Uint8Array(len)\n for (let i = 0; i < len; i++) {\n buf[i] = /** @type {number} */ (encodedString.codePointAt(i))\n }\n return buf\n}\n\n/* c8 ignore next */\nexport const utf8TextEncoder = /** @type {TextEncoder} */ (typeof TextEncoder !== 'undefined' ? new TextEncoder() : null)\n\n/**\n * @param {string} str\n * @return {Uint8Array}\n */\nexport const _encodeUtf8Native = str => utf8TextEncoder.encode(str)\n\n/**\n * @param {string} str\n * @return {Uint8Array}\n */\n/* c8 ignore next */\nexport const encodeUtf8 = utf8TextEncoder ? _encodeUtf8Native : _encodeUtf8Polyfill\n\n/**\n * @param {Uint8Array} buf\n * @return {string}\n */\nexport const _decodeUtf8Polyfill = buf => {\n let remainingLen = buf.length\n let encodedString = ''\n let bufPos = 0\n while (remainingLen > 0) {\n const nextLen = remainingLen < 10000 ? remainingLen : 10000\n const bytes = buf.subarray(bufPos, bufPos + nextLen)\n bufPos += nextLen\n // Starting with ES5.1 we can supply a generic array-like object as arguments\n encodedString += String.fromCodePoint.apply(null, /** @type {any} */ (bytes))\n remainingLen -= nextLen\n }\n return decodeURIComponent(escape(encodedString))\n}\n\n/* c8 ignore next */\nexport let utf8TextDecoder = typeof TextDecoder === 'undefined' ? null : new TextDecoder('utf-8', { fatal: true, ignoreBOM: true })\n\n/* c8 ignore start */\nif (utf8TextDecoder && utf8TextDecoder.decode(new Uint8Array()).length === 1) {\n // Safari doesn't handle BOM correctly.\n // This fixes a bug in Safari 13.0.5 where it produces a BOM the first time it is called.\n // utf8TextDecoder.decode(new Uint8Array()).length === 1 on the first call and\n // utf8TextDecoder.decode(new Uint8Array()).length === 1 on the second call\n // Another issue is that from then on no BOM chars are recognized anymore\n /* c8 ignore next */\n utf8TextDecoder = null\n}\n/* c8 ignore stop */\n\n/**\n * @param {Uint8Array} buf\n * @return {string}\n */\nexport const _decodeUtf8Native = buf => /** @type {TextDecoder} */ (utf8TextDecoder).decode(buf)\n\n/**\n * @param {Uint8Array} buf\n * @return {string}\n */\n/* c8 ignore next */\nexport const decodeUtf8 = utf8TextDecoder ? _decodeUtf8Native : _decodeUtf8Polyfill\n\n/**\n * @param {string} str The initial string\n * @param {number} index Starting position\n * @param {number} remove Number of characters to remove\n * @param {string} insert New content to insert\n */\nexport const splice = (str, index, remove, insert = '') => str.slice(0, index) + insert + str.slice(index + remove)\n\n/**\n * @param {string} source\n * @param {number} n\n */\nexport const repeat = (source, n) => array.unfold(n, () => source).join('')\n","/**\n * Efficient schema-less binary encoding with support for variable length encoding.\n *\n * Use [lib0/encoding] with [lib0/decoding]. Every encoding function has a corresponding decoding function.\n *\n * Encodes numbers in little-endian order (least to most significant byte order)\n * and is compatible with Golang's binary encoding (https://golang.org/pkg/encoding/binary/)\n * which is also used in Protocol Buffers.\n *\n * ```js\n * // encoding step\n * const encoder = encoding.createEncoder()\n * encoding.writeVarUint(encoder, 256)\n * encoding.writeVarString(encoder, 'Hello world!')\n * const buf = encoding.toUint8Array(encoder)\n * ```\n *\n * ```js\n * // decoding step\n * const decoder = decoding.createDecoder(buf)\n * decoding.readVarUint(decoder) // => 256\n * decoding.readVarString(decoder) // => 'Hello world!'\n * decoding.hasContent(decoder) // => false - all data is read\n * ```\n *\n * @module encoding\n */\n\nimport * as math from './math.js'\nimport * as number from './number.js'\nimport * as binary from './binary.js'\nimport * as string from './string.js'\nimport * as array from './array.js'\n\n/**\n * A BinaryEncoder handles the encoding to an Uint8Array.\n */\nexport class Encoder {\n constructor () {\n this.cpos = 0\n this.cbuf = new Uint8Array(100)\n /**\n * @type {Array<Uint8Array>}\n */\n this.bufs = []\n }\n}\n\n/**\n * @function\n * @return {Encoder}\n */\nexport const createEncoder = () => new Encoder()\n\n/**\n * @param {function(Encoder):void} f\n */\nexport const encode = (f) => {\n const encoder = createEncoder()\n f(encoder)\n return toUint8Array(encoder)\n}\n\n/**\n * The current length of the encoded data.\n *\n * @function\n * @param {Encoder} encoder\n * @return {number}\n */\nexport const length = encoder => {\n let len = encoder.cpos\n for (let i = 0; i < encoder.bufs.length; i++) {\n len += encoder.bufs[i].length\n }\n return len\n}\n\n/**\n * Check whether encoder is empty.\n *\n * @function\n * @param {Encoder} encoder\n * @return {boolean}\n */\nexport const hasContent = encoder => encoder.cpos > 0 || encoder.bufs.length > 0\n\n/**\n * Transform to Uint8Array.\n *\n * @function\n * @param {Encoder} encoder\n * @return {Uint8Array} The created ArrayBuffer.\n */\nexport const toUint8Array = encoder => {\n const uint8arr = new Uint8Array(length(encoder))\n let curPos = 0\n for (let i = 0; i < encoder.bufs.length; i++) {\n const d = encoder.bufs[i]\n uint8arr.set(d, curPos)\n curPos += d.length\n }\n uint8arr.set(new Uint8Array(encoder.cbuf.buffer, 0, encoder.cpos), curPos)\n return uint8arr\n}\n\n/**\n * Verify that it is possible to write `len` bytes wtihout checking. If\n * necessary, a new Buffer with the required length is attached.\n *\n * @param {Encoder} encoder\n * @param {number} len\n */\nexport const verifyLen = (encoder, len) => {\n const bufferLen = encoder.cbuf.length\n if (bufferLen - encoder.cpos < len) {\n encoder.bufs.push(new Uint8Array(encoder.cbuf.buffer, 0, encoder.cpos))\n encoder.cbuf = new Uint8Array(math.max(bufferLen, len) * 2)\n encoder.cpos = 0\n }\n}\n\n/**\n * Write one byte to the encoder.\n *\n * @function\n * @param {Encoder} encoder\n * @param {number} num The byte that is to be encoded.\n */\nexport const write = (encoder, num) => {\n const bufferLen = encoder.cbuf.length\n if (encoder.cpos === bufferLen) {\n encoder.bufs.push(encoder.cbuf)\n encoder.cbuf = new Uint8Array(bufferLen * 2)\n encoder.cpos = 0\n }\n encoder.cbuf[encoder.cpos++] = num\n}\n\n/**\n * Write one byte at a specific position.\n * Position must already be written (i.e. encoder.length > pos)\n *\n * @function\n * @param {Encoder} encoder\n * @param {number} pos Position to which to write data\n * @param {number} num Unsigned 8-bit integer\n */\nexport const set = (encoder, pos, num) => {\n let buffer = null\n // iterate all buffers and adjust position\n for (let i = 0; i < encoder.bufs.length && buffer === null; i++) {\n const b = encoder.bufs[i]\n if (pos < b.length) {\n buffer = b // found buffer\n } else {\n pos -= b.length\n }\n }\n if (buffer === null) {\n // use current buffer\n buffer = encoder.cbuf\n }\n buffer[pos] = num\n}\n\n/**\n * Write one byte as an unsigned integer.\n *\n * @function\n * @param {Encoder} encoder\n * @param {number} num The number that is to be encoded.\n */\nexport const writeUint8 = write\n\n/**\n * Write one byte as an unsigned Integer at a specific location.\n *\n * @function\n * @param {Encoder} encoder\n * @param {number} pos The location where the data will be written.\n * @param {number} num The number that is to be encoded.\n */\nexport const setUint8 = set\n\n/**\n * Write two bytes as an unsigned integer.\n *\n * @function\n * @param {Encoder} encoder\n * @param {number} num The number that is to be encoded.\n */\nexport const writeUint16 = (encoder, num) => {\n write(encoder, num & binary.BITS8)\n write(encoder, (num >>> 8) & binary.BITS8)\n}\n/**\n * Write two bytes as an unsigned integer at a specific location.\n *\n * @function\n * @param {Encoder} encoder\n * @param {number} pos The location where the data will be written.\n * @param {number} num The number that is to be encoded.\n */\nexport const setUint16 = (encoder, pos, num) => {\n set(encoder, pos, num & binary.BITS8)\n set(encoder, pos + 1, (num >>> 8) & binary.BITS8)\n}\n\n/**\n * Write two bytes as an unsigned integer\n *\n * @function\n * @param {Encoder} encoder\n * @param {number} num The number that is to be encoded.\n */\nexport const writeUint32 = (encoder, num) => {\n for (let i = 0; i < 4; i++) {\n write(encoder, num & binary.BITS8)\n num >>>= 8\n }\n}\n\n/**\n * Write two bytes as an unsigned integer in big endian order.\n * (most significant byte first)\n *\n * @function\n * @param {Encoder} encoder\n * @param {number} num The number that is to be encoded.\n */\nexport const writeUint32BigEndian = (encoder, num) => {\n for (let i = 3; i >= 0; i--) {\n write(encoder, (num >>> (8 * i)) & binary.BITS8)\n }\n}\n\n/**\n * Write two bytes as an unsigned integer at a specific location.\n *\n * @function\n * @param {Encoder} encoder\n * @param {number} pos The location where the data will be written.\n * @param {number} num The number that is to be encoded.\n */\nexport const setUint32 = (encoder, pos, num) => {\n for (let i = 0; i < 4; i++) {\n set(encoder, pos + i, num & binary.BITS8)\n num >>>= 8\n }\n}\n\n/**\n * Write a variable length unsigned integer. Max encodable integer is 2^53.\n *\n * @function\n * @param {Encoder} encoder\n * @param {number} num The number that is to be encoded.\n */\nexport const writeVarUint = (encoder, num) => {\n while (num > binary.BITS7) {\n write(encoder, binary.BIT8 | (binary.BITS7 & num))\n num = math.floor(num / 128) // shift >>> 7\n }\n write(encoder, binary.BITS7 & num)\n}\n\n/**\n * Write a variable length integer.\n *\n * We use the 7th bit instead for signaling that this is a negative number.\n *\n * @function\n * @param {Encoder} encoder\n * @param {number} num The number that is to be encoded.\n */\nexport const writeVarInt = (encoder, num) => {\n const isNegative = math.isNegativeZero(num)\n if (isNegative) {\n num = -num\n }\n // |- whether to continue reading |- whether is negative |- number\n write(encoder, (num > binary.BITS6 ? binary.BIT8 : 0) | (isNegative ? binary.BIT7 : 0) | (binary.BITS6 & num))\n num = math.floor(num / 64) // shift >>> 6\n // We don't need to consider the case of num === 0 so we can use a different\n // pattern here than above.\n while (num > 0) {\n write(encoder, (num > binary.BITS7 ? binary.BIT8 : 0) | (binary.BITS7 & num))\n num = math.floor(num / 128) // shift >>> 7\n }\n}\n\n/**\n * A cache to store strings temporarily\n */\nconst _strBuffer = new Uint8Array(30000)\nconst _maxStrBSize = _strBuffer.length / 3\n\n/**\n * Write a variable length string.\n *\n * @function\n * @param {Encoder} encoder\n * @param {String} str The string that is to be encoded.\n */\nexport const _writeVarStringNative = (encoder, str) => {\n if (str.length < _maxStrBSize) {\n // We can encode the string into the existing buffer\n /* c8 ignore next */\n const written = string.utf8TextEncoder.encodeInto(str, _strBuffer).written || 0\n writeVarUint(encoder, written)\n for (let i = 0; i < written; i++) {\n write(encoder, _strBuffer[i])\n }\n } else {\n writeVarUint8Array(encoder, string.encodeUtf8(str))\n }\n}\n\n/**\n * Write a variable length string.\n *\n * @function\n * @param {Encoder} encoder\n * @param {String} str The string that is to be encoded.\n */\nexport const _writeVarStringPolyfill = (encoder, str) => {\n const encodedString = unescape(encodeURIComponent(str))\n const len = encodedString.length\n writeVarUint(encoder, len)\n for (let i = 0; i < len; i++) {\n write(encoder, /** @type {number} */ (encodedString.codePointAt(i)))\n }\n}\n\n/**\n * Write a variable length string.\n *\n * @function\n * @param {Encoder} encoder\n * @param {String} str The string that is to be encoded.\n */\n/* c8 ignore next */\nexport const writeVarString = (string.utf8TextEncoder && /** @type {any} */ (string.utf8TextEncoder).encodeInto) ? _writeVarStringNative : _writeVarStringPolyfill\n\n/**\n * Write a string terminated by a special byte sequence. This is not very performant and is\n * generally discouraged. However, the resulting byte arrays are lexiographically ordered which\n * makes this a nice feature for databases.\n *\n * The string will be encoded using utf8 and then terminated and escaped using writeTerminatingUint8Array.\n *\n * @function\n * @param {Encoder} encoder\n * @param {String} str The string that is to be encoded.\n */\nexport const writeTerminatedString = (encoder, str) =>\n writeTerminatedUint8Array(encoder, string.encodeUtf8(str))\n\n/**\n * Write a terminating Uint8Array. Note that this is not performant and is generally\n * discouraged. There are few situations when this is needed.\n *\n * We use 0x0 as a terminating character. 0x1 serves as an escape character for 0x0 and 0x1.\n *\n * Example: [0,1,2] is encoded to [1,0,1,1,2,0]. 0x0, and 0x1 needed to be escaped using 0x1. Then\n * the result is terminated using the 0x0 character.\n *\n * This is basically how many systems implement null terminated strings. However, we use an escape\n * character 0x1 to avoid issues and potenial attacks on our database (if this is used as a key\n * encoder for NoSql databases).\n *\n * @function\n * @param {Encoder} encoder\n * @param {Uint8Array} buf The string that is to be encoded.\n */\nexport const writeTerminatedUint8Array = (encoder, buf) => {\n for (let i = 0; i < buf.length; i++) {\n const b = buf[i]\n if (b === 0 || b === 1) {\n write(encoder, 1)\n }\n write(encoder, buf[i])\n }\n write(encoder, 0)\n}\n\n/**\n * Write the content of another Encoder.\n *\n * @TODO: can be improved!\n * - Note: Should consider that when appending a lot of small Encoders, we should rather clone than referencing the old structure.\n * Encoders start with a rather big initial buffer.\n *\n * @function\n * @param {Encoder} encoder The enUint8Arr\n * @param {Encoder} append The BinaryEncoder to be written.\n */\nexport const writeBinaryEncoder = (encoder, append) => writeUint8Array(encoder, toUint8Array(append))\n\n/**\n * Append fixed-length Uint8Array to the encoder.\n *\n * @function\n * @param {Encoder} encoder\n * @param {Uint8Array} uint8Array\n */\nexport const writeUint8Array = (encoder, uint8Array) => {\n const bufferLen = encoder.cbuf.length\n const cpos = encoder.cpos\n const leftCopyLen = math.min(bufferLen - cpos, uint8Array.length)\n const rightCopyLen = uint8Array.length - leftCopyLen\n encoder.cbuf.set(uint8Array.subarray(0, leftCopyLen), cpos)\n encoder.cpos += leftCopyLen\n if (rightCopyLen > 0) {\n // Still something to write, write right half..\n // Append new buffer\n encoder.bufs.push(encoder.cbuf)\n // must have at least size of remaining buffer\n encoder.cbuf = new Uint8Array(math.max(bufferLen * 2, rightCopyLen))\n // copy array\n encoder.cbuf.set(uint8Array.subarray(leftCopyLen))\n encoder.cpos = rightCopyLen\n }\n}\n\n/**\n * Append an Uint8Array to Encoder.\n *\n * @function\n * @param {Encoder} encoder\n * @param {Uint8Array} uint8Array\n */\nexport const writeVarUint8Array = (encoder, uint8Array) => {\n writeVarUint(encoder, uint8Array.byteLength)\n writeUint8Array(encoder, uint8Array)\n}\n\n/**\n * Create an DataView of the next `len` bytes. Use it to write data after\n * calling this function.\n *\n * ```js\n * // write float32 using DataView\n * const dv = writeOnDataView(encoder, 4)\n * dv.setFloat32(0, 1.1)\n * // read float32 using DataView\n * const dv = readFromDataView(encoder, 4)\n * dv.getFloat32(0) // => 1.100000023841858 (leaving it to the reader to find out why this is the correct result)\n * ```\n *\n * @param {Encoder} encoder\n * @param {number} len\n * @return {DataView}\n */\nexport const writeOnDataView = (encoder, len) => {\n verifyLen(encoder, len)\n const dview = new DataView(encoder.cbuf.buffer, encoder.cpos, len)\n encoder.cpos += len\n return dview\n}\n\n/**\n * @param {Encoder} encoder\n * @param {number} num\n */\nexport const writeFloat32 = (encoder, num) => writeOnDataView(encoder, 4).setFloat32(0, num, false)\n\n/**\n * @param {Encoder} encoder\n * @param {number} num\n */\nexport const writeFloat64 = (encoder, num) => writeOnDataView(encoder, 8).setFloat64(0, num, false)\n\n/**\n * @param {Encoder} encoder\n * @param {bigint} num\n */\nexport const writeBigInt64 = (encoder, num) => /** @type {any} */ (writeOnDataView(encoder, 8)).setBigInt64(0, num, false)\n\n/**\n * @param {Encoder} encoder\n * @param {bigint} num\n */\nexport const writeBigUint64 = (encoder, num) => /** @type {any} */ (writeOnDataView(encoder, 8)).setBigUint64(0, num, false)\n\nconst floatTestBed = new DataView(new ArrayBuffer(4))\n/**\n * Check if a number can be encoded as a 32 bit float.\n *\n * @param {number} num\n * @return {boolean}\n */\nconst isFloat32 = num => {\n floatTestBed.setFloat32(0, num)\n return floatTestBed.getFloat32(0) === num\n}\n\n/**\n * Encode data with efficient binary format.\n *\n * Differences to JSON:\n * • Transforms data to a binary format (not to a string)\n * • Encodes undefined, NaN, and ArrayBuffer (these can't be represented in JSON)\n * • Numbers are efficiently encoded either as a variable length integer, as a\n * 32 bit float, as a 64 bit float, or as a 64 bit bigint.\n *\n * Encoding table:\n *\n * | Data Type | Prefix | Encoding Method | Comment |\n * | ------------------- | -------- | ------------------ | ------- |\n * | undefined | 127 | | Functions, symbol, and everything that cannot be identified is encoded as undefined |\n * | null | 126 | | |\n * | integer | 125 | writeVarInt | Only encodes 32 bit signed integers |\n * | float32 | 124 | writeFloat32 | |\n * | float64 | 123 | writeFloat64 | |\n * | bigint | 122 | writeBigInt64 | |\n * | boolean (false) | 121 | | True and false are different data types so we save the following byte |\n * | boolean (true) | 120 | | - 0b01111000 so the last bit determines whether true or false |\n * | string | 119 | writeVarString | |\n * | object<string,any> | 118 | custom | Writes {length} then {length} key-value pairs |\n * | array<any> | 117 | custom | Writes {length} then {length} json values |\n * | Uint8Array | 116 | writeVarUint8Array | We use Uint8Array for any kind of binary data |\n *\n * Reasons for the decreasing prefix:\n * We need the first bit for extendability (later we may want to encode the\n * prefix with writeVarUint). The remaining 7 bits are divided as follows:\n * [0-30] the beginning of the data range is used for custom purposes\n * (defined by the function that uses this library)\n * [31-127] the end of the data range is used for data encoding by\n * lib0/encoding.js\n *\n * @param {Encoder} encoder\n * @param {undefined|null|number|bigint|boolean|string|Object<string,any>|Array<any>|Uint8Array} data\n */\nexport const writeAny = (encoder, data) => {\n switch (typeof data) {\n case 'string':\n // TYPE 119: STRING\n write(encoder, 119)\n writeVarString(encoder, data)\n break\n case 'number':\n if (number.isInteger(data) && math.abs(data) <= binary.BITS31) {\n // TYPE 125: INTEGER\n write(encoder, 125)\n writeVarInt(encoder, data)\n } else if (isFloat32(data)) {\n // TYPE 124: FLOAT32\n write(encoder, 124)\n writeFloat32(encoder, data)\n } else {\n // TYPE 123: FLOAT64\n write(encoder, 123)\n writeFloat64(encoder, data)\n }\n break\n case 'bigint':\n // TYPE 122: BigInt\n write(encoder, 122)\n writeBigInt64(encoder, data)\n break\n case 'object':\n if (data === null) {\n // TYPE 126: null\n write(encoder, 126)\n } else if (array.isArray(data)) {\n // TYPE 117: Array\n write(encoder, 117)\n writeVarUint(encoder, data.length)\n for (let i = 0; i < data.length; i++) {\n writeAny(encoder, data[i])\n }\n } else if (data instanceof Uint8Array) {\n // TYPE 116: ArrayBuffer\n write(encoder, 116)\n writeVarUint8Array(encoder, data)\n } else {\n // TYPE 118: Object\n write(encoder, 118)\n const keys = Object.keys(data)\n writeVarUint(encoder, keys.length)\n for (let i = 0; i < keys.length; i++) {\n const key = keys[i]\n writeVarString(encoder, key)\n writeAny(encoder, data[key])\n }\n }\n break\n case 'boolean':\n // TYPE 120/121: boolean (true/false)\n write(encoder, data ? 120 : 121)\n break\n default:\n // TYPE 127: undefined\n write(encoder, 127)\n }\n}\n\n/**\n * Now come a few stateful encoder that have their own classes.\n */\n\n/**\n * Basic Run Length Encoder - a basic compression implementation.\n *\n * Encodes [1,1,1,7] to [1,3,7,1] (3 times 1, 1 time 7). This encoder might do more harm than good if there are a lot of values that are not repeated.\n *\n * It was originally used for image compression. Cool .. article http://csbruce.com/cbm/transactor/pdfs/trans_v7_i06.pdf\n *\n * @note T must not be null!\n *\n * @template T\n */\nexport class RleEncoder extends Encoder {\n /**\n * @param {function(Encoder, T):void} writer\n */\n constructor (writer) {\n super()\n /**\n * The writer\n */\n this.w = writer\n /**\n * Current state\n * @type {T|null}\n */\n this.s = null\n this.count = 0\n }\n\n /**\n * @param {T} v\n */\n write (v) {\n if (this.s === v) {\n this.count++\n } else {\n if (this.count > 0) {\n // flush counter, unless this is the first value (count = 0)\n writeVarUint(this, this.count - 1) // since count is always > 0, we can decrement by one. non-standard encoding ftw\n }\n this.count = 1\n // write first value\n this.w(this, v)\n this.s = v\n }\n }\n}\n\n/**\n * Basic diff decoder using variable length encoding.\n *\n * Encodes the values [3, 1100, 1101, 1050, 0] to [3, 1097, 1, -51, -1050] using writeVarInt.\n */\nexport class IntDiffEncoder extends Encoder {\n /**\n * @param {number} start\n */\n constructor (start) {\n super()\n /**\n * Current state\n * @type {number}\n */\n this.s = start\n }\n\n /**\n * @param {number} v\n */\n write (v) {\n writeVarInt(this, v - this.s)\n this.s = v\n }\n}\n\n/**\n * A combination of IntDiffEncoder and RleEncoder.\n *\n * Basically first writes the IntDiffEncoder and then counts duplicate diffs using RleEncoding.\n *\n * Encodes the values [1,1,1,2,3,4,5,6] as [1,1,0,2,1,5] (RLE([1,0,0,1,1,1,1,1]) ⇒ RleIntDiff[1,1,0,2,1,5])\n */\nexport class RleIntDiffEncoder extends Encoder {\n /**\n * @param {number} start\n */\n constructor (start) {\n super()\n /**\n * Current state\n * @type {number}\n */\n this.s = start\n this.count = 0\n }\n\n /**\n * @param {number} v\n */\n write (v) {\n if (this.s === v && this.count > 0) {\n this.count++\n } else {\n if (this.count > 0) {\n // flush counter, unless this is the first value (count = 0)\n writeVarUint(this, this.count - 1) // since count is always > 0, we can decrement by one. non-standard encoding ftw\n }\n this.count = 1\n // write first value\n writeVarInt(this, v - this.s)\n this.s = v\n }\n }\n}\n\n/**\n * @param {UintOptRleEncoder} encoder\n */\nconst flushUintOptRleEncoder = encoder => {\n if (encoder.count > 0) {\n // flush counter, unless this is the first value (count = 0)\n // case 1: just a single value. set sign to positive\n // case 2: write several values. set sign to negative to indicate that there is a length coming\n writeVarInt(encoder.encoder, encoder.count === 1 ? encoder.s : -encoder.s)\n if (encoder.count > 1) {\n writeVarUint(encoder.encoder, encoder.count - 2) // since count is always > 1, we can decrement by one. non-standard encoding ftw\n }\n }\n}\n\n/**\n * Optimized Rle encoder that does not suffer from the mentioned problem of the basic Rle encoder.\n *\n * Internally uses VarInt encoder to write unsigned integers. If the input occurs multiple times, we write\n * write it as a negative number. The UintOptRleDecoder then understands that it needs to read a count.\n *\n * Encodes [1,2,3,3,3] as [1,2,-3,3] (once 1, once 2, three times 3)\n */\nexport class UintOptRleEncoder {\n constructor () {\n this.encoder = new Encoder()\n /**\n * @type {number}\n */\n this.s = 0\n this.count = 0\n }\n\n /**\n * @param {number} v\n */\n write (v) {\n if (this.s === v) {\n this.count++\n } else {\n flushUintOptRleEncoder(this)\n this.count = 1\n this.s = v\n }\n }\n\n /**\n * Flush the encoded state and transform this to a Uint8Array.\n *\n * Note that this should only be called once.\n */\n toUint8Array () {\n flushUintOptRleEncoder(this)\n return toUint8Array(this.encoder)\n }\n}\n\n/**\n * Increasing Uint Optimized RLE Encoder\n *\n * The RLE encoder counts the number of same occurences of the same value.\n * The IncUintOptRle encoder counts if the value increases.\n * I.e. 7, 8, 9, 10 will be encoded as [-7, 4]. 1, 3, 5 will be encoded\n * as [1, 3, 5].\n */\nexport class IncUintOptRleEncoder {\n constructor () {\n this.encoder = new Encoder()\n /**\n * @type {number}\n */\n this.s = 0\n this.count = 0\n }\n\n /**\n * @param {number} v\n */\n write (v) {\n if (this.s + this.count === v) {\n this.count++\n } else {\n flushUintOptRleEncoder(this)\n this.count = 1\n this.s = v\n }\n }\n\n /**\n * Flush the encoded state and transform this to a Uint8Array.\n *\n * Note that this should only be called once.\n */\n toUint8Array () {\n flushUintOptRleEncoder(this)\n return toUint8Array(this.encoder)\n }\n}\n\n/**\n * @param {IntDiffOptRleEncoder} encoder\n */\nconst flushIntDiffOptRleEncoder = encoder => {\n if (encoder.count > 0) {\n // 31 bit making up the diff | wether to write the counter\n // const encodedDiff = encoder.diff << 1 | (encoder.count === 1 ? 0 : 1)\n const encodedDiff = encoder.diff * 2 + (encoder.count === 1 ? 0 : 1)\n // flush counter, unless this is the first value (count = 0)\n // case 1: just a single value. set first bit to positive\n // case 2: write several values. set first bit to negative to indicate that there is a length coming\n writeVarInt(encoder.encoder, encodedDiff)\n if (encoder.count > 1) {\n writeVarUint(encoder.encoder, encoder.count - 2) // since count is always > 1, we can decrement by one. non-standard encoding ftw\n }\n }\n}\n\n/**\n * A combination of the IntDiffEncoder and the UintOptRleEncoder.\n *\n * The count approach is similar to the UintDiffOptRleEncoder, but instead of using the negative bitflag, it encodes\n * in the LSB whether a count is to be read. Therefore this Encoder only supports 31 bit integers!\n *\n * Encodes [1, 2, 3, 2] as [3, 1, 6, -1] (more specifically [(1 << 1) | 1, (3 << 0) | 0, -1])\n *\n * Internally uses variable length encoding. Contrary to normal UintVar encoding, the first byte contains:\n * * 1 bit that denotes whether the next value is a count (LSB)\n * * 1 bit that denotes whether this value is negative (MSB - 1)\n * * 1 bit that denotes whether to continue reading the variable length integer (MSB)\n *\n * Therefore, only five bits remain to encode diff ranges.\n *\n * Use this Encoder only when appropriate. In most cases, this is probably a bad idea.\n */\nexport class IntDiffOptRleEncoder {\n constructor () {\n this.encoder = new Encoder()\n /**\n * @type {number}\n */\n this.s = 0\n this.count = 0\n this.diff = 0\n }\n\n /**\n * @param {number} v\n */\n write (v) {\n if (this.diff === v - this.s) {\n this.s = v\n this.count++\n } else {\n flushIntDiffOptRleEncoder(this)\n this.count = 1\n this.diff = v - this.s\n this.s = v\n }\n }\n\n /**\n * Flush the encoded state and transform this to a Uint8Array.\n *\n * Note that this should only be called once.\n */\n toUint8Array () {\n flushIntDiffOptRleEncoder(this)\n return toUint8Array(this.encoder)\n }\n}\n\n/**\n * Optimized String Encoder.\n *\n * Encoding many small strings in a simple Encoder is not very efficient. The function call to decode a string takes some time and creates references that must be eventually deleted.\n * In practice, when decoding several million small strings, the GC will kick in more and more often to collect orphaned string objects (or maybe there is another reason?).\n *\n * This string encoder solves the above problem. All strings are concatenated and written as a single string using a single encoding call.\n *\n * The lengths are encoded using a UintOptRleEncoder.\n */\nexport class StringEncoder {\n constructor () {\n /**\n * @type {Array<string>}\n */\n this.sarr = []\n this.s = ''\n this.lensE = new UintOptRleEncoder()\n }\n\n /**\n * @param {string} string\n */\n write (string) {\n this.s += string\n if (this.s.length > 19) {\n this.sarr.push(this.s)\n this.s = ''\n }\n this.lensE.write(string.length)\n }\n\n toUint8Array () {\n const encoder = new Encoder()\n this.sarr.push(this.s)\n this.s = ''\n writeVarString(encoder, this.sarr.join(''))\n writeUint8Array(encoder, this.lensE.toUint8Array())\n return toUint8Array(encoder)\n }\n}\n","/**\n * Error helpers.\n *\n * @module error\n */\n\n/**\n * @param {string} s\n * @return {Error}\n */\n/* c8 ignore next */\nexport const create = s => new Error(s)\n\n/**\n * @throws {Error}\n * @return {never}\n */\n/* c8 ignore next 3 */\nexport const methodUnimplemented = () => {\n throw create('Method unimplemented')\n}\n\n/**\n * @throws {Error}\n * @return {never}\n */\n/* c8 ignore next 3 */\nexport const unexpectedCase = () => {\n throw create('Unexpected case')\n}\n","/**\n * Efficient schema-less binary decoding with support for variable length encoding.\n *\n * Use [lib0/decoding] with [lib0/encoding]. Every encoding function has a corresponding decoding function.\n *\n * Encodes numbers in little-endian order (least to most significant byte order)\n * and is compatible with Golang's binary encoding (https://golang.org/pkg/encoding/binary/)\n * which is also used in Protocol Buffers.\n *\n * ```js\n * // encoding step\n * const encoder = encoding.createEncoder()\n * encoding.writeVarUint(encoder, 256)\n * encoding.writeVarString(encoder, 'Hello world!')\n * const buf = encoding.toUint8Array(encoder)\n * ```\n *\n * ```js\n * // decoding step\n * const decoder = decoding.createDecoder(buf)\n * decoding.readVarUint(decoder) // => 256\n * decoding.readVarString(decoder) // => 'Hello world!'\n * decoding.hasContent(decoder) // => false - all data is read\n * ```\n *\n * @module decoding\n */\n\nimport * as binary from './binary.js'\nimport * as math from './math.js'\nimport * as number from './number.js'\nimport * as string from './string.js'\nimport * as error from './error.js'\nimport * as encoding from './encoding.js'\n\nconst errorUnexpectedEndOfArray = error.create('Unexpected end of array')\nconst errorIntegerOutOfRange = error.create('Integer out of Range')\n\n/**\n * A Decoder handles the decoding of an Uint8Array.\n */\nexport class Decoder {\n /**\n * @param {Uint8Array} uint8Array Binary data to decode\n */\n constructor (uint8Array) {\n /**\n * Decoding target.\n *\n * @type {Uint8Array}\n */\n this.arr = uint8Array\n /**\n * Current decoding position.\n *\n * @type {number}\n */\n this.pos = 0\n }\n}\n\n/**\n * @function\n * @param {Uint8Array} uint8Array\n * @return {Decoder}\n */\nexport const createDecoder = uint8Array => new Decoder(uint8Array)\n\n/**\n * @function\n * @param {Decoder} decoder\n * @return {boolean}\n */\nexport const hasContent = decoder => decoder.pos !== decoder.arr.length\n\n/**\n * Clone a decoder instance.\n * Optionally set a new position parameter.\n *\n * @function\n * @param {Decoder} decoder The decoder instance\n * @param {number} [newPos] Defaults to current position\n * @return {Decoder} A clone of `decoder`\n */\nexport const clone = (decoder, newPos = decoder.pos) => {\n const _decoder = createDecoder(decoder.arr)\n _decoder.pos = newPos\n return _decoder\n}\n\n/**\n * Create an Uint8Array view of the next `len` bytes and advance the position by `len`.\n *\n * Important: The Uint8Array still points to the underlying ArrayBuffer. Make sure to discard the result as soon as possible to prevent any memory leaks.\n * Use `buffer.copyUint8Array` to copy the result into a new Uint8Array.\n *\n * @function\n * @param {Decoder} decoder The decoder instance\n * @param {number} len The length of bytes to read\n * @return {Uint8Array}\n */\nexport const readUint8Array = (decoder, len) => {\n const view = new Uint8Array(decoder.arr.buffer, decoder.pos + decoder.arr.byteOffset, len)\n decoder.pos += len\n return view\n}\n\n/**\n * Read variable length Uint8Array.\n *\n * Important: The Uint8Array still points to the underlying ArrayBuffer. Make sure to discard the result as soon as possible to prevent any memory leaks.\n * Use `buffer.copyUint8Array` to copy the result into a new Uint8Array.\n *\n * @function\n * @param {Decoder} decoder\n * @return {Uint8Array}\n */\nexport const readVarUint8Array = decoder => readUint8Array(decoder, readVarUint(decoder))\n\n/**\n * Read the rest of the content as an ArrayBuffer\n * @function\n * @param {Decoder} decoder\n * @return {Uint8Array}\n */\nexport const readTailAsUint8Array = decoder => readUint8Array(decoder, decoder.arr.length - decoder.pos)\n\n/**\n * Skip one byte, jump to the next position.\n * @function\n * @param {Decoder} decoder The decoder instance\n * @return {number} The next position\n */\nexport const skip8 = decoder => decoder.pos++\n\n/**\n * Read one byte as unsigned integer.\n * @function\n * @param {Decoder} decoder The decoder instance\n * @return {number} Unsigned 8-bit integer\n */\nexport const readUint8 = decoder => decoder.arr[decoder.pos++]\n\n/**\n * Read 2 bytes as unsigned integer.\n *\n * @function\n * @param {Decoder} decoder\n * @return {number} An unsigned integer.\n */\nexport const readUint16 = decoder => {\n const uint =\n decoder.arr[decoder.pos] +\n (decoder.arr[decoder.pos + 1] << 8)\n decoder.pos += 2\n return uint\n}\n\n/**\n * Read 4 bytes as unsigned integer.\n *\n * @function\n * @param {Decoder} decoder\n * @return {number} An unsigned integer.\n */\nexport const readUint32 = decoder => {\n const uint =\n (decoder.arr[decoder.pos] +\n (decoder.arr[decoder.pos + 1] << 8) +\n (decoder.arr[decoder.pos + 2] << 16) +\n (decoder.arr[decoder.pos + 3] << 24)) >>> 0\n decoder.pos += 4\n return uint\n}\n\n/**\n * Read 4 bytes as unsigned integer in big endian order.\n * (most significant byte first)\n *\n * @function\n * @param {Decoder} decoder\n * @return {number} An unsigned integer.\n */\nexport const readUint32BigEndian = decoder => {\n const uint =\n (decoder.arr[decoder.pos + 3] +\n (decoder.arr[decoder.pos + 2] << 8) +\n (decoder.arr[decoder.pos + 1] << 16) +\n (decoder.arr[decoder.pos] << 24)) >>> 0\n decoder.pos += 4\n return uint\n}\n\n/**\n * Look ahead without incrementing the position\n * to the next byte and read it as unsigned integer.\n *\n * @function\n * @param {Decoder} decoder\n * @return {number} An unsigned integer.\n */\nexport const peekUint8 = decoder => decoder.arr[decoder.pos]\n\n/**\n * Look ahead without incrementing the position\n * to the next byte and read it as unsigned integer.\n *\n * @function\n * @param {Decoder} decoder\n * @return {number} An unsigned integer.\n */\nexport const peekUint16 = decoder =>\n decoder.arr[decoder.pos] +\n (decoder.arr[decoder.pos + 1] << 8)\n\n/**\n * Look ahead without incrementing the position\n * to the next byte and read it as unsigned integer.\n *\n * @function\n * @param {Decoder} decoder\n * @return {number} An unsigned integer.\n */\nexport const peekUint32 = decoder => (\n decoder.arr[decoder.pos] +\n (decoder.arr[decoder.pos + 1] << 8) +\n (decoder.arr[decoder.pos + 2] << 16) +\n (decoder.arr[decoder.pos + 3] << 24)\n) >>> 0\n\n/**\n * Read unsigned integer (32bit) with variable length.\n * 1/8th of the storage is used as encoding overhead.\n * * numbers < 2^7 is stored in one bytlength\n * * numbers < 2^14 is stored in two bylength\n *\n * @function\n * @param {Decoder} decoder\n * @return {number} An unsigned integer.length\n */\nexport const readVarUint = decoder => {\n let num = 0\n let mult = 1\n const len = decoder.arr.length\n while (decoder.pos < len) {\n const r = decoder.arr[decoder.pos++]\n // num = num | ((r & binary.BITS7) << len)\n num = num + (r & binary.BITS7) * mult // shift $r << (7*#iterations) and add it to num\n mult *= 128 // next iteration, shift 7 \"more\" to the left\n if (r < binary.BIT8) {\n return num\n }\n /* c8 ignore start */\n if (num > number.MAX_SAFE_INTEGER) {\n throw errorIntegerOutOfRange\n }\n /* c8 ignore stop */\n }\n throw errorUnexpectedEndOfArray\n}\n\n/**\n * Read signed integer (32bit) with variable length.\n * 1/8th of the storage is used as encoding overhead.\n * * numbers < 2^7 is stored in one bytlength\n * * numbers < 2^14 is stored in two bylength\n * @todo This should probably create the inverse ~num if number is negative - but this would be a breaking change.\n *\n * @function\n * @param {Decoder} decoder\n * @return {number} An unsigned integer.length\n */\nexport const readVarInt = decoder => {\n let r = decoder.arr[decoder.pos++]\n let num = r & binary.BITS6\n let mult = 64\n const sign = (r & binary.BIT7) > 0 ? -1 : 1\n if ((r & binary.BIT8) === 0) {\n // don't continue reading\n return sign * num\n }\n const len = decoder.arr.length\n while (decoder.pos < len) {\n r = decoder.arr[decoder.pos++]\n // num = num | ((r & binary.BITS7) << len)\n num = num + (r & binary.BITS7) * mult\n mult *= 128\n if (r < binary.BIT8) {\n return sign * num\n }\n /* c8 ignore start */\n if (num > number.MAX_SAFE_INTEGER) {\n throw errorIntegerOutOfRange\n }\n /* c8 ignore stop */\n }\n throw errorUnexpectedEndOfArray\n}\n\n/**\n * Look ahead and read varUint without incrementing position\n *\n * @function\n * @param {Decoder} decoder\n * @return {number}\n */\nexport const peekVarUint = decoder => {\n const pos = decoder.pos\n const s = readVarUint(decoder)\n decoder.pos = pos\n return s\n}\n\n/**\n * Look ahead and read varUint without incrementing position\n *\n * @function\n * @param {Decoder} decoder\n * @return {number}\n */\nexport const peekVarInt = decoder => {\n const pos = decoder.pos\n const s = readVarInt(decoder)\n decoder.pos = pos\n return s\n}\n\n/**\n * We don't test this function anymore as we use native decoding/encoding by default now.\n * Better not modify this anymore..\n *\n * Transforming utf8 to a string is pretty expensive. The code performs 10x better\n * when String.fromCodePoint is fed with all characters as arguments.\n * But most environments have a maximum number of arguments per functions.\n * For effiency reasons we apply a maximum of 10000 characters at once.\n *\n * @function\n * @param {Decoder} decoder\n * @return {String} The read String.\n */\n/* c8 ignore start */\nexport const _readVarStringPolyfill = decoder => {\n let remainingLen = readVarUint(decoder)\n if (remainingLen === 0) {\n return ''\n } else {\n let encodedString = String.fromCodePoint(readUint8(decoder)) // remember to decrease remainingLen\n if (--remainingLen < 100) { // do not create a Uint8Array for small strings\n while (remainingLen--) {\n encodedString += String.fromCodePoint(readUint8(decoder))\n }\n } else {\n while (remainingLen > 0) {\n const nextLen = remainingLen < 10000 ? remainingLen : 10000\n // this is dangerous, we create a fresh array view from the existing buffer\n const bytes = decoder.arr.subarray(decoder.pos, decoder.pos + nextLen)\n decoder.pos += nextLen\n // Starting with ES5.1 we can supply a generic array-like object as arguments\n encodedString += String.fromCodePoint.apply(null, /** @type {any} */ (bytes))\n remainingLen -= nextLen\n }\n }\n return decodeURIComponent(escape(encodedString))\n }\n}\n/* c8 ignore stop */\n\n/**\n * @function\n * @param {Decoder} decoder\n * @return {String} The read String\n */\nexport const _readVarStringNative = decoder =>\n /** @type any */ (string.utf8TextDecoder).decode(readVarUint8Array(decoder))\n\n/**\n * Read string of variable length\n * * varUint is used to store the length of the string\n *\n * @function\n * @param {Decoder} decoder\n * @return {String} The read String\n *\n */\n/* c8 ignore next */\nexport const readVarString = string.utf8TextDecoder ? _readVarStringNative : _readVarStringPolyfill\n\n/**\n * @param {Decoder} decoder\n * @return {Uint8Array}\n */\nexport const readTerminatedUint8Array = decoder => {\n const encoder = encoding.createEncoder()\n let b\n while (true) {\n b = readUint8(decoder)\n if (b === 0) {\n return encoding.toUint8Array(encoder)\n }\n if (b === 1) {\n b = readUint8(decoder)\n }\n encoding.write(encoder, b)\n }\n}\n\n/**\n * @param {Decoder} decoder\n * @return {string}\n */\nexport const readTerminatedString = decoder => string.decodeUtf8(readTerminatedUint8Array(decoder))\n\n/**\n * Look ahead and read varString without incrementing position\n *\n * @function\n * @param {Decoder} decoder\n * @return {string}\n */\nexport const peekVarString = decoder => {\n const pos = decoder.pos\n const s = readVarString(decoder)\n decoder.pos = pos\n return s\n}\n\n/**\n * @param {Decoder} decoder\n * @param {number} len\n * @return {DataView}\n */\nexport const readFromDataView = (decoder, len) => {\n const dv = new DataView(decoder.arr.buffer, decoder.arr.byteOffset + decoder.pos, len)\n decoder.pos += len\n return dv\n}\n\n/**\n * @param {Decoder} decoder\n */\nexport const readFloat32 = decoder => readFromDataView(decoder, 4).getFloat32(0, false)\n\n/**\n * @param {Decoder} decoder\n */\nexport const readFloat64 = decoder => readFromDataView(decoder, 8).getFloat64(0, false)\n\n/**\n * @param {Decoder} decoder\n */\nexport const readBigInt64 = decoder => /** @type {any} */ (readFromDataView(decoder, 8)).getBigInt64(0, false)\n\n/**\n * @param {Decoder} decoder\n */\nexport const readBigUint64 = decoder => /** @type {any} */ (readFromDataView(decoder, 8)).getBigUint64(0, false)\n\n/**\n * @type {Array<function(Decoder):any>}\n */\nconst readAnyLookupTable = [\n decoder => undefined, // CASE 127: undefined\n decoder => null, // CASE 126: null\n readVarInt, // CASE 125: integer\n readFloat32, // CASE 124: float32\n readFloat64, // CASE 123: float64\n readBigInt64, // CASE 122: bigint\n decoder => false, // CASE 121: boolean (false)\n decoder => true, // CASE 120: boolean (true)\n readVarString, // CASE 119: string\n decoder => { // CASE 118: object<string,any>\n const len = readV