UNPKG

@guyycodes/plugin-sdk

Version:

AI-powered plugin scaffolding tool - Create full-stack applications with 7+ AI models, 50+ business integrations, and production-ready infrastructure

941 lines (812 loc) 22.5 kB
// appConfig.js const fs = require('fs-extra'); const path = require('path'); async function createAppConfigNode(projectPath, projectName, backendType, integration = 'quickbooks') { const manifest = { "description": "custom integration plugin with Ai agents", "version": "1.3.0", "license": "MIT", "environment": "localhost", "server-name": `${projectName}`, "apiUrl": "https://api.example.com", "backendTag": `${projectName}-ts-backend`, "gpu": { "supportGPU": false, }, "langsmith": { "apiUrl": "https://api.smith.langchain.com", "projectName": `${projectName}`, "tracingEnabled": true }, "network": { "name": `server-net` }, "deployment": { "dev": { "host": `${projectName}-dev.unitera.ai`, "frontendUrl": "levelupco-plugin-dev.b-cdn.net", "bucket": "levelupco-dev" }, "staging": { "host": `${projectName}-staging.unitera.ai`, "frontendUrl": "levelupco-plugin-staging.b-cdn.net/", "bucket": "levelupco-staging" }, }, "api": { "port": [3000], "endpoints": { "chat": "/chat", "streaming":"/ws/chat", "env":"/env", "thisAddress":"/node_address", "net_agent":"/set_next_agent", "select_model":"/select_model", "models":"/models", "tools":"/tools", "data":"/api/data" }, "healthCheck": "/health" }, "pluginConfig": { "schema": { "pricing": { "model": "", "oneTimePrice": "", "subscriptionTier": "", "tokenCostPer1M": 0 } } }, "integrations": { "autoSync": true, "syncInterval": 15, "readOnly": false, "appIntegrations": [ "shopify", "woocommerce", "quickbooks", "stripe" ] }, "categories": [ "inventory", "analytics", "e-commerce", "automation" ], "keywords": [ "inventory", "stock", "warehouse", "tracking", "reorder", "analytics" ], "ui": { "expose": "./PluginApp", "appIcons": { "small": "https://levelupco-plugin-staging.b-cdn.net/plugin-small.png", "large": "https://levelupco-plugin-staging.b-cdn.net/plugin-large.png" }, "screenshots": [ "https://levelupco-plugin-staging.b-cdn.net/dashboard.png", "https://levelupco-plugin-staging.b-cdn.net/reports.png" ] }, "permissions": [ "read:inventory", "write:inventory", "read:analytics", "notifications:reorder", "integrations:shopify", "integrations:quickbooks" ] }; fs.writeJsonSync(path.join(projectPath, 'app.config.json'), manifest, { spaces: 2 }); } async function createAppConfigPython(projectPath, projectName, backendType, integration = 'quickbooks') { const appConfig = { "description": "custom integration plugin with Ai agents", "version": "1.3.0", "license": "MIT", "environment": "localhost", "server-name": `${projectName}`, "author": { "name": "Sarah Johnson", "email": "sarah.johnson@inventech.com", "url": "https://inventech.com" }, "backendTag": `${projectName}-backend`, "region": "dal", "gpu": { "supportGPU": true, "host": "216.81.248.115:12966", "gpuType": "gpu-nvidia-a100", "gpuCount": 1, "gpuMemory": 4096, "supportedRegions": ["dal", "lax", "sfo"], "types": [ "gpu-nvidia-rtx-4000-sff-ada", "gpu-nvidia-l4", "gpu-nvidia-rtx-a6000", "gpu-nvidia-l40s", "gpu-nvidia-a100", "2x-gpu-nvidia-a100", "4x-gpu-nvidia-a100", "8x-gpu-nvidia-a100", "gpu-nvidia-h100", "2x-gpu-nvidia-h100", "4x-gpu-nvidia-h100", "8x-gpu-nvidia-h100" ] }, "langsmith": { "apiUrl": "https://api.smith.langchain.com", "projectName": `${projectName}`, "tracingEnabled": true }, "network": { "name": "server-net" }, "deployment": { "dev": { "host": `${projectName}-dev.unitera.ai`, "frontendUrl": "levelupco-plugin-dev.b-cdn.net", "bucket": "levelupco-dev" }, "staging": { "host": `${projectName}-staging.unitera.ai`, "frontendUrl": "levelupco-plugin-staging.b-cdn.net/", "bucket": "levelupco-staging" }, }, "models": [{ "name": "phi4", "modalities": ["image", "text", "audio"], "entrypoint": "src/server/models/Phi4_multimodal/entrypoint.py" }, { "name": "Qwen25Math", "modalities": ["text"], "entrypoint": "src/server/models/Qwen25Math/entrypoint.py" }, { "name": "DeepHermes3", "modalities": ["text"], "entrypoint": "src/server/models/DeepHermes3/entrypoint.py" }, { "name": "Flux", "modalities": ["text", "image"], "entrypoint": "src/server/models/Flux/entrypoint.py" }, { "name": "FluxKontext", "modalities": ["text", "image"], "entrypoint": "src/server/models/FluxKontext/entrypoint.py" }, { "name": "Qwen25VL", "modalities": ["text", "image"], "entrypoint": "src/server/models/Qwen25VL/entrypoint.py" }, { "name": "Qwen25Code", "modalities": ["text", "code"], "entrypoint": "src/server/models/Qwen25Code/entrypoint.py" } ], "agent": { "maxTokensPerRequest": 4000, "responseTimeout": 30, "enableMemory": true }, "api": { "port": [3000], "endpoints": { "chat": "/chat", "streaming":"/ws/chat", "env":"/env", "thisAddress":"/node_address", "net_agent":"/set_next_agent", "select_model":"/select_model", "models":"/models", "tools":"/tools", "data":"/api/data" }, "healthCheck": "/health" }, "pluginConfig": { "schema": { "pricing": { "model": "", "oneTimePrice": "", "subscriptionTier": "", "tokenCostPer1M": 0 } } }, "integrations": { "white-label":false, "autoSync": true, "syncInterval": 15, "readOnly": false, "appIntegrations": [ "shopify", "woocommerce", "quickbooks", "stripe" ] }, "categories": [ "inventory", "analytics", "e-commerce", "automation" ], "keywords": [ "inventory", "stock", "warehouse", "tracking", "reorder", "analytics" ], "ui": { "expose": "./PluginApp", "appIcons": { "small": "https://levelupco-plugin-staging.b-cdn.net/plugin-small.png", "large": "https://levelupco-plugin-staging.b-cdn.net/plugin-large.png" }, "screenshots": [ "https://levelupco-plugin-staging.b-cdn.net/dashboard.png", "https://levelupco-plugin-staging.b-cdn.net/reports.png" ] }, "permissions": [ "read:inventory", "write:inventory", "read:analytics", "notifications:reorder", "integrations:shopify", "integrations:quickbooks" ] } fs.writeJsonSync(path.join(projectPath, 'app.config.json'), appConfig, { spaces: 2 }); } async function createDockerIgnore(projectPath, projectName) { const dockerIgnore = `/src/client/ /src/client/** /scripts/ /package.json # If you have model images or outputs elsewhere, ignore those too src/server/models/*/model/ src/server/models/*/*/model/ src/server/models/*/model/images_output/ src/server/models/*/images_output/ !app.config.json !manifest.json !langgraph.json # Python __pycache__/ *.py[cod] *$py.class *.so .Python venv/ env/ ENV/ .venv/ .env.local/ .env.*.local/ src/server/venv/ # Model files (download at runtime instead) *.safetensors *.bin *.onnx *.pt *.pth *.h5 *.keras # Development .git/ .gitignore .vscode/ .idea/ *.swp *.swo *~ .DS_Store # Testing .pytest_cache/ .coverage htmlcov/ .tox/ *.cover *.log # Documentation docs/ !README.md # Build artifacts build/ dist/ *.egg-info/ .eggs/ # Temporary files tmp/ temp/ *.tmp *.bak .cache/ # Jupyter .ipynb_checkpoints/ *.ipynb # Docker Dockerfile* docker-compose*.yml .dockerignore # CI/CD .github/ .gitlab-ci.yml .travis.yml # Node modules (if any frontend assets) node_modules/ # Large data files *.csv !package.json !tsconfig.json !langgraph.json *.xml *.parquet # Images (except necessary ones) *.jpg *.jpeg *.png *.gif *.bmp !public/*.png !public/*.svg`; fs.writeFileSync(path.join(projectPath, '.dockerignore'), dockerIgnore); } async function createGitIgnore(projectPath, projectName) { const gitignore = `# Dependencies node_modules/ # Environment variables .env .env.local # Build outputs dist/ build/ # IDE files .vscode/ .idea/ *.swp # OS files .DS_Store Thumbs.db # Logs *.log # Model weights and large files - UPDATED PATHS src/server/models/*/model/ src/server/models/*/*/model/ src/server/models/*/model/images_output/ src/server/models/*/images_output/ *.safetensors *.bin *.pt *.pth *.onnx *.h5 *.keras # Virtual environment src/server/venv/ venv/ ENV/ env/ # Jupyter notebooks .ipynb_checkpoints/ # pytest .pytest_cache/ # Coverage reports htmlcov/ .coverage .coverage.* coverage.xml *.cover # Python __pycache__/ *.pyc *.pyo *.pyd .Python build/ develop-eggs/ dist/ downloads/ eggs/ .eggs/ lib64/ parts/ sdist/ var/ wheels/ *.egg-info/ .installed.cfg *.egg`; fs.writeFileSync(path.join(projectPath, '.gitignore'), gitignore); } async function createReadmeMd(projectPath, projectName) { const readmeMd = `\# Python LangGraph Multi-Model Agent Server A production-ready Python agent server built with LangGraph that features multiple AI models, web search, image generation, multimodal support, and extensive business integrations. \#\# 🚀 Features - 🤖 **Multi-Model Support**: Seamlessly switch between models: - **GPT-4o-mini**: OpenAI's efficient model for general tasks - **Qwen2.5-Math-7B**: Specialized mathematical reasoning with step-by-step solutions - **DeepHermes-3**: Advanced reasoning and instruction following - **Phi-4**: Microsoft's multimodal model supporting images and audio - **FLUX.1-schnell**: State-of-the-art image generation - 🔍 **Web Search Integration**: Real-time web search using Tavily API - 🖼️ **Image Generation**: Create AI images with natural language prompts - 🎯 **Multimodal Support**: Process images and audio inputs (Phi-4) - 📊 **LangSmith Telemetry**: Full observability and tracing - 🔄 **Streaming Responses**: Server-sent events for real-time interaction - 🛠️ **Extensible Tool System**: Easy-to-add tools and integrations - 🏢 **Business Integrations**: Pre-built integrations for 10+ popular services - 🐳 **Production Ready**: Docker support with GPU acceleration - 🔐 **Session Management**: Maintain conversation context \#\# 🏗️ Architecture \`\`\`mermaid graph TD A[Client] -->|HTTP/SSE| B[FastAPI Server] B --> C[LangGraph Agent] C --> D[Model Router] D --> E[GPT-4o-mini] D --> F[Local Models] F --> G[Qwen Math] F --> H[DeepHermes] F --> I[Phi-4 Multimodal] F --> J[FLUX Image Gen] C --> K[Tool System] K --> L[Web Search] K --> M[Calculator] K --> N[Business Tools] N --> O[QuickBooks/Stripe/etc] C --> P[LangSmith Telemetry] B --> Q[Model Manager] Q --> R[Auto Download] \`\`\` \#\# 🎯 Quick Start \#\#\# Prerequisites - Python 3.11+ - 8GB+ RAM (16GB+ recommended for local models) - GPU (optional but recommended): - Apple Silicon Mac (M1/M2/M3/M4) for MPS acceleration - NVIDIA GPU with CUDA 12.2+ for Linux/Windows - API Keys: - OpenAI API Key (required) - Tavily API Key (required for web search) - LangChain/LangSmith API Key (required for telemetry) - Business integration API keys (optional) \#\#\# 1. Clone and Install \`\`\`bash git clone <your-repo> cd python_agent/src/server # Create virtual environment python -m venv venv source venv/bin/activate \# On Windows: venv\Scripts\activate # Install dependencies pip install -r requirements.txt \`\`\` \#\#\# 2. Environment Setup Create a \`.env\` file: \`\`\`env # Core API Keys (Required) OPENAI_API_KEY=your_openai_api_key_here TAVILY_API_KEY=your_tavily_api_key_here LANGCHAIN_API_KEY=your_langchain_api_key_here # LangSmith Configuration LANGCHAIN_TRACING_V2=true LANGCHAIN_PROJECT=chatbot-agent LANGCHAIN_ENDPOINT=https://api.smith.langchain.com # Optional: Business Integration Keys QUICKBOOKS_CLIENT_ID=your_quickbooks_client_id QUICKBOOKS_CLIENT_SECRET=your_quickbooks_client_secret STRIPE_API_KEY=sk_live_... SQUARE_ACCESS_TOKEN=... SHOPIFY_STORE_URL=your-store.myshopify.com SHOPIFY_ACCESS_TOKEN=... MAILCHIMP_API_KEY=... MAILCHIMP_SERVER_PREFIX=us1 HUBSPOT_ACCESS_TOKEN=... SLACK_BOT_TOKEN=xoxb-... CALENDLY_API_KEY=... GOOGLE_SERVICE_ACCOUNT_FILE=path/to/service-account.json # Server Configuration PORT=3000 NODE_ENV=production \`\`\` \#\#\# 3. Run the Server \`\`\`bash # Development mode python main.py # Production mode with Gunicorn gunicorn main:app -w 4 -k uvicorn.workers.UvicornWorker --bind 0.0.0.0:3000 \`\`\` The server will start on \`http://localhost:3000\` ## 📡 API Endpoints ### Health & Status \`\`\`bash GET /health # Server health check GET /env # Environment configuration GET /tools # List available tools GET /models # List models and availability \`\`\` ### Chat Endpoints #### Standard Chat \`\`\`bash POST /chat Content-Type: application/json { "message": "What's the weather in San Francisco?", "sessionId": "user-123", "model": "gpt-4o-mini" # Optional: defaults to gpt-4o-mini } \`\`\` #### Streaming Chat \`\`\`bash POST /chat/stream Content-Type: application/json { "message": "Explain quantum computing", "sessionId": "user-123", "model": "DeepHermes3" } \`\`\` Returns Server-Sent Events stream. #### Multimodal Chat (Phi-4) \`\`\`bash POST /chat Content-Type: application/json { "message": "What's in this image?", "model": "phi4", "images": ["https://example.com/image.jpg"], "audios": ["path/to/audio.wav"] } \`\`\` #### Image Generation (FLUX) \`\`\`bash POST /chat Content-Type: application/json { "message": "A cyberpunk city at sunset with flying cars", "model": "Flux" } \`\`\` ### Model Management \`\`\`bash POST /select_model Content-Type: application/json { "model": "Qwen25Math" } \`\`\` Downloads the model if not available, then activates it. \#\# 🤖 Available Models \#\#\# GPT-4o-mini (Default) - **Type**: API-based (OpenAI) - **Best for**: General queries, web search, tool use - **Features**: Fast, efficient, supports all tools \#\#\# Qwen2.5-Math-7B - **Type**: Local model (7B parameters) - **Best for**: Mathematical problems, calculations, proofs - **Features**: Step-by-step reasoning, LaTeX support - **Requirements**: ~15GB disk space, 8GB+ RAM \#\#\# DeepHermes-3-Llama-3-8B - **Type**: Local model (8B parameters) - **Best for**: Complex reasoning, detailed explanations - **Features**: Enhanced instruction following - **Requirements**: ~16GB disk space, 8GB+ RAM \#\#\# Phi-4 Multimodal - **Type**: Local model (14B parameters) - **Best for**: Analyzing images and audio - **Features**: Vision + audio understanding - **Requirements**: ~28GB disk space, 16GB+ RAM \#\#\# FLUX.1-schnell - **Type**: Local model (12B parameters) - **Best for**: High-quality image generation - **Features**: Fast image creation, 1024x1024 default - **Requirements**: ~24GB disk space, GPU recommended \#\# 🛠️ Tool System \#\#\# Built-in Tools \#\#\#\# Web Search \`\`\`python @tool def web_search(query: str) -> str: """Search the web for current information""" \`\`\` \#\#\#\# Calculator \`\`\`python @tool def calculator(expression: str) -> str: """Perform mathematical calculations""" \`\`\` \#\#\# Business Integrations The server includes pre-built integrations for: - **💳 Payment & Finance**: QuickBooks, Stripe, Square - **🛍️ E-commerce**: Shopify - **📧 Marketing & CRM**: Mailchimp, HubSpot - **💬 Communication**: Slack - **📅 Scheduling**: Calendly - **📊 Analytics**: Looker Studio - **🔧 Developer Tools**: MCP (Model Context Protocol) See [integrations/README.md](integrations/README.md) for detailed setup and usage. \#\#\# Adding Custom Tools 1. Create a new tool: \`\`\`python # tools/my_custom_tool.py from langchain_core.tools import tool @tool def my_custom_tool(param: str) -> str: """Description of what the tool does""" # Implementation return "Result" \`\`\` 2. Register in \`tools/tools.py\`: \`\`\`python from tools.my_custom_tool import my_custom_tool AVAILABLE_TOOLS["my_custom_tool"] = my_custom_tool \`\`\` \#\# 💡 Usage Examples ### Mathematical Problem Solving \`\`\`bash curl -X POST http://localhost:3000/chat \ -H "Content-Type: application/json" \ -d '{ "message": "Solve x^2 + 5x + 6 = 0", "model": "Qwen25Math" }' \`\`\` ### Image Analysis \`\`\`bash curl -X POST http://localhost:3000/chat \ -H "Content-Type: application/json" \ -d '{ "message": "Describe this chart and explain the trends", "model": "phi4", "images": ["..."] }' \`\`\` ### Image Generation \`\`\`bash curl -X POST http://localhost:3000/chat \ -H "Content-Type: application/json" \ -d '{ "message": "A serene Japanese garden with cherry blossoms", "model": "Flux" }' \`\`\` \#\#\# Business Automation \`\`\`python # Example: Create invoice and notify customer message = """ Create a QuickBooks invoice for John Doe (john@example.com) for $500 consulting services, then send them a Slack message about the invoice. """ \`\`\` \#\# 🐳 Docker Deployment \#\#\# Standard Deployment \`\`\`bash docker build -t python-agent . docker run -p 3000:3000 \ -e OPENAI_API_KEY=$OPENAI_API_KEY \ -e TAVILY_API_KEY=$TAVILY_API_KEY \ -e LANGCHAIN_API_KEY=$LANGCHAIN_API_KEY \ python-agent \`\`\` \#\#\# GPU-Enabled Deployment \`\`\`bash \# For NVIDIA GPUs docker run --gpus all -p 3000:3000 \ -v $(pwd)/models:/app/models \ python-agent # For development with volume mounts docker run --gpus all -p 3000:3000 \ -v $(pwd):/app \ -v /app/venv \ python-agent \`\`\` \#\#\# Monitoring & Observability All agent operations are traced to LangSmith when \`LANGCHAIN_TRACING_V2=true\`. View traces at: https://smith.langchain.com Key metrics tracked: - Message flow through the agent graph - Tool invocations and results - Model inference times and token usage - Error rates and debugging information - Multi-step reasoning chains \#\#\# Advanced Configuration \#\#\#\# Memory Management For large models on limited GPU memory: \`\`\`python # In model initialization pipeline.enable_attention_slicing() pipeline.enable_vae_slicing() pipeline.enable_sequential_cpu_offload() \`\`\` \#\#\# Custom Model Parameters \`\`\`python # When calling chat endpoint { "message": "Your prompt", "model": "gpt-4o-mini", "temperature": 0.7, "max_tokens": 1000 } \`\`\` \#\#\#\# Session Persistence Sessions are maintained in memory by default. For production, configure Redis: \`\`\`env REDIS_URI=redis://localhost:6379 \`\`\` \#\# 🆘 Troubleshooting \#\#\# Common Issues 1. **Model Download Failures** - Ensure sufficient disk space (50GB+ for all models) - Check internet connection - Try manual download: \`cd models/ModelName && python download_model.py\` 2. **GPU/MPS Not Detected** - Verify PyTorch installation: \`python -c "import torch; print(torch.cuda.is_available())"\` - For Mac: \`python -c "import torch; print(torch.backends.mps.is_available())"\` - Reinstall PyTorch with appropriate CUDA version 3. **Memory Errors** - Reduce batch size or image resolution - Enable CPU offloading - Use quantized models when available 4. **API Key Issues** - Verify keys are set correctly in \`.env\` - Check API key permissions and quotas - Ensure no extra spaces or quotes in values \#\#\# Debug Mode \`\`\`bash \# Enable debug logging export LOG_LEVEL=DEBUG python main.py \`\`\` \#\#\# Performance Optimization 1. **Model Loading** - Models are cached after first load - Use \`select_model\` endpoint to pre-load models 2. **Inference Speed** - GPU acceleration provides 10-50x speedup - Use appropriate model for task (don't use Phi-4 for simple text) - Enable streaming for better perceived performance 3. **Concurrent Requests** - Use Gunicorn with multiple workers - Configure based on available RAM/VRAM - Monitor with LangSmith for bottlenecks \#\#\# Contributing 1. Fork the repository 2. Create a feature branch 3. Add tests for new functionality 4. Submit a pull request See [CONTRIBUTING.md](CONTRIBUTING.md) for detailed guidelines. \#\#\# Additional Resources - [LangGraph Documentation](https://python.langchain.com/docs/langgraph) - [Integration Guide](integrations/README.md) - [Model Documentation](models/README.md) - [API Reference](docs/API.md) \#\#\# License Apache 2.0 License - see [LICENSE](LICENSE) file for details. `; fs.writeFileSync(path.join(projectPath, 'README.md'), readmeMd); } module.exports = { createReadmeMd, createAppConfigNode, createAppConfigPython, createDockerIgnore, createGitIgnore, };