UNPKG

@gravityai-dev/pinecone

Version:

Pinecone vector database nodes for GravityWorkflow - knowledge management and vector operations

55 lines 1.94 kB
"use strict"; /** * Pinecone Query Service * Handles vector similarity search operations */ Object.defineProperty(exports, "__esModule", { value: true }); exports.executeQuery = executeQuery; const platform_1 = require("../../shared/platform"); const pineconeClient_1 = require("../../shared/pineconeClient"); const logger = (0, platform_1.createLogger)("PineconeQueryService"); /** * Execute Pinecone query with text */ async function executeQuery(config) { try { // Build credential context const credentialContext = { workflowId: config.context.workflow?.id || "unknown", executionId: config.context.executionId || "unknown", nodeId: config.context.nodeId, nodeType: "PineconeQuery", credentials: config.context.credentials || {}, }; logger.info("Starting Pinecone query", { queryLength: config.query.length, queryPreview: config.query.substring(0, 100), indexName: config.indexName, namespace: config.namespace, }); // Initialize Pinecone client const pinecone = await (0, pineconeClient_1.initializePineconeClient)(credentialContext); const index = pinecone.index(config.indexName); // For now, return a simple mock response // TODO: Implement actual query logic with embedding generation const results = []; const topResult = null; logger.info("Query completed", { resultsCount: results.length, topScore: topResult?.score || 0, }); return { results, topResult, usedReranking: false, }; } catch (error) { logger.error("Failed to execute Pinecone query", { error: error.message, indexName: config.indexName, }); throw error; } } //# sourceMappingURL=queryService.js.map