@graphty/algorithms
Version:
Graph algorithms library for browser environments implemented in TypeScript
1,546 lines (1,183 loc) • 44.6 kB
Markdown
# @graphty/algorithms
[](https://github.com/graphty-org/algorithms/actions/workflows/test.yml)
[](https://coveralls.io/github/graphty-org/algorithms)
[](https://www.npmjs.com/package/@graphty/algorithms)
[](https://opensource.org/licenses/MIT)
[](https://graphty-org.github.io/algorithms/)
A comprehensive TypeScript graph algorithms library with 98 algorithms optimized for browser environments and visualization applications.
## Features
- **TypeScript-first**: Full type safety with comprehensive type definitions
- **Browser-optimized**: Designed to run efficiently in web browsers
- **Modular**: Import only the algorithms you need
- **Comprehensive**: 98 graph algorithms including traversal, shortest paths, centrality, clustering, flow, matching, link prediction, and more
- **Interactive Examples**: [Live demos](https://graphty-org.github.io/algorithms/) with visualizations for all algorithms
- **Performance Analysis**: [Detailed benchmarks](https://graphty-org.github.io/algorithms/benchmarks/) comparing algorithm performance
- **Well-tested**: Extensive test suite with high coverage
- **Standards-compliant**: Follows conventional commits and semantic versioning
## Performance Optimizations
The library automatically optimizes performance for large graphs (≥10,000 nodes) using:
- **Direction-Optimized BFS**: Dynamically switches between top-down and bottom-up search strategies, providing up to 42x speedup on large graphs
- **CSR Graph Format**: Compressed Sparse Row format for cache-efficient memory access
- **Bit-Packed Data Structures**: 8x memory reduction using bit arrays for boolean data
These optimizations are applied automatically - no configuration needed! Just use the standard API:
```typescript
// Automatically uses optimized implementation for large graphs
const result = breadthFirstSearch(largeGraph, startNode);
```
All BFS-based algorithms benefit from these optimizations:
- `breadthFirstSearch`, `shortestPathBFS`, `singleSourceShortestPathBFS`
- `betweennessCentrality`, `closenessCentrality`
- Connected component algorithms
### Performance Benchmarks
| Graph Size | Standard BFS | Optimized BFS | Speedup |
|------------|--------------|---------------|---------|
| 10K nodes | 4.40ms | 6.34ms | 0.69x |
| 50K nodes | 158.64ms | 44.27ms | 3.58x |
| 100K nodes | 5,370ms | 126ms | 42.58x |
*Note: Optimizations activate automatically for graphs ≥10K nodes to avoid conversion overhead on smaller graphs.*
### Learn More
- 📖 [Performance Guide](docs/PERFORMANCE_GUIDE.md) - Detailed optimization explanations
- 🔄 [Migration Guide](docs/MIGRATION_GUIDE.md) - Upgrading from older versions
- 💾 [Memory vs Speed Tradeoffs](docs/PERFORMANCE_GUIDE.md#memory-vs-speed-tradeoffs) - Making the right choices
## Installation
```bash
npm install @graphty/algorithms
```
## Quick Start
```typescript
import { Graph, breadthFirstSearch, dijkstra } from '@graphty/algorithms'
// Create a new graph
const graph = new Graph()
// Add nodes and edges
graph.addNode('A')
graph.addNode('B')
graph.addNode('C')
graph.addEdge('A', 'B', 1) // source, target, weight
graph.addEdge('B', 'C', 2)
// Basic graph operations
console.log(graph.nodeCount) // 3
console.log(graph.totalEdgeCount) // 2
console.log(graph.hasEdge('A', 'B')) // true
// Run algorithms
const traversal = breadthFirstSearch(graph, 'A')
console.log(traversal.order) // ['A', 'B', 'C']
const shortestPaths = dijkstra(graph, 'A')
// Get distance to C
const pathToC = shortestPaths.get('C')
console.log(pathToC?.distance) // 3
```
## API Reference
### Graph Class
The core data structure for representing graphs.
```typescript
class Graph {
constructor(config?: Partial<GraphConfig>)
}
```
#### Configuration Options
```typescript
interface GraphConfig {
directed: boolean // Default: false
allowSelfLoops: boolean // Default: false
allowParallelEdges: boolean // Default: false
}
```
#### Node Operations
```typescript
// Add a node with optional data
graph.addNode(id: NodeId, data?: Record<string, unknown>): void
// Remove a node and all its edges
graph.removeNode(id: NodeId): boolean
// Check if a node exists
graph.hasNode(id: NodeId): boolean
// Get node details
graph.getNode(id: NodeId): Node | undefined
// Get all nodes
graph.nodes(): IterableIterator<Node>
```
#### Edge Operations
```typescript
// Add an edge with optional weight and data
graph.addEdge(
source: NodeId,
target: NodeId,
weight?: number,
data?: Record<string, unknown>
): void
// Remove an edge
graph.removeEdge(source: NodeId, target: NodeId): boolean
// Check if an edge exists
graph.hasEdge(source: NodeId, target: NodeId): boolean
// Get edge details
graph.getEdge(source: NodeId, target: NodeId): Edge | undefined
// Get all edges
graph.edges(): IterableIterator<Edge>
```
#### Graph Properties
```typescript
// Number of nodes
graph.nodeCount: number
// Total number of edges (counts both directions for undirected)
graph.totalEdgeCount: number
// Number of unique edges
graph.uniqueEdgeCount: number
// Check if graph is directed
graph.isDirected: boolean
```
#### Degree Operations
```typescript
// Total degree (in + out for directed)
graph.degree(nodeId: NodeId): number
// In-degree (directed graphs only)
graph.inDegree(nodeId: NodeId): number
// Out-degree
graph.outDegree(nodeId: NodeId): number
```
#### Neighbor Operations
```typescript
// Get neighboring nodes
graph.neighbors(nodeId: NodeId): IterableIterator<NodeId>
// Get incoming neighbors (directed graphs)
graph.inNeighbors(nodeId: NodeId): IterableIterator<NodeId>
// Get outgoing neighbors
graph.outNeighbors(nodeId: NodeId): IterableIterator<NodeId>
```
#### Utility Methods
```typescript
// Create a deep copy
graph.clone(): Graph
// Clear all nodes and edges
graph.clear(): void
// Get a copy of the graph configuration
graph.getConfig(): GraphConfig
```
### Traversal Algorithms
#### Breadth-First Search (BFS)
```typescript
import { breadthFirstSearch, shortestPathBFS, singleSourceShortestPathBFS, isBipartite } from '@graphty/algorithms';
// Basic BFS traversal
const result = breadthFirstSearch(graph, startNode, {
targetNode?: NodeId, // Optional: stop when target is reached
visitCallback?: (node: NodeId, level: number) => void
});
// Returns: TraversalResult { visited: Set<NodeId>, order: NodeId[], tree?: Map<NodeId, NodeId | null> }
// Note: For graphs with ≥10K nodes, BFS automatically uses:
// - Direction-Optimized BFS (switches between top-down/bottom-up)
// - CSR graph format for cache efficiency
// - Bit-packed data structures for memory efficiency
// Find shortest path between two nodes (unweighted)
const path = shortestPathBFS(graph, source, target);
// Returns: ShortestPathResult | null
// ShortestPathResult = { distance: number, path: NodeId[], predecessor: Map<NodeId, NodeId | null> }
// Find all shortest paths from a source
const paths = singleSourceShortestPathBFS(graph, source);
// Returns: Map<NodeId, ShortestPathResult>
// Check if graph is bipartite
const bipartite = isBipartite(graph);
// Returns: { isBipartite: boolean, coloring?: Map<NodeId, number> }
```
#### Depth-First Search (DFS)
```typescript
import { depthFirstSearch, topologicalSort, hasCycleDFS, findStronglyConnectedComponents } from '@graphty/algorithms';
// Basic DFS traversal
const result = depthFirstSearch(graph, startNode, {
targetNode?: NodeId, // Optional: stop when target is reached
visitCallback?: (node: NodeId, level: number) => void,
recursive?: boolean, // Use recursive implementation (default: false)
preOrder?: boolean // Visit nodes in pre-order (default: true)
});
// Returns: TraversalResult
// Topological sort (for DAGs)
const sorted = topologicalSort(graph);
// Returns: NodeId[] | null (null if cycle detected)
// Cycle detection
const hasCycle = hasCycleDFS(graph);
// Returns: boolean
// Find strongly connected components using DFS
const sccs = findStronglyConnectedComponents(graph);
// Returns: NodeId[][]
```
### Shortest Path Algorithms
#### Dijkstra's Algorithm
```typescript
import {
dijkstra,
dijkstraPath,
singleSourceShortestPath,
allPairsShortestPath
} from '@graphty/algorithms'
// Single-source shortest paths
const result = dijkstra(graph, source, {
target?: NodeId // Optional: stop when target is reached
})
// Returns: Map<NodeId, ShortestPathResult>
// ShortestPathResult = { distance: number, path: NodeId[], predecessor: Map<NodeId, NodeId | null> }
// Get specific path
const path = dijkstraPath(graph, source, target)
// Returns: ShortestPathResult | null
// All shortest paths from source
const paths = singleSourceShortestPath(graph, source)
// Returns: Map<NodeId, ShortestPathResult>
// All pairs shortest paths
const allPairs = allPairsShortestPath(graph)
// Returns: Map<NodeId, Map<NodeId, ShortestPathResult>>
```
#### Bellman-Ford Algorithm
```typescript
import {
bellmanFord,
bellmanFordPath,
hasNegativeCycle
} from '@graphty/algorithms'
// Single-source shortest paths (handles negative weights)
const result = bellmanFord(graph, source)
// Returns: BellmanFordResult {
// distances: Map<NodeId, number>,
// predecessors: Map<NodeId, NodeId | null>,
// hasNegativeCycle: boolean,
// negativeCycleNodes?: Set<NodeId>
// }
// Get specific path
const path = bellmanFordPath(graph, source, target)
// Returns: ShortestPathResult | null
// Check for negative cycles
const result = hasNegativeCycle(graph)
// Returns: BellmanFordResult with hasNegativeCycle boolean
```
#### Floyd-Warshall Algorithm
```typescript
import {
floydWarshall,
floydWarshallPath,
transitiveClosure
} from '@graphty/algorithms'
// All pairs shortest paths
const result = floydWarshall(graph)
// Returns: { distances: Map<NodeId, Map<NodeId, number>>, next: Map<NodeId, Map<NodeId, NodeId | null>> }
// Get specific path between any pair
const path = floydWarshallPath(result, source, target)
// Returns: NodeId[] | null
// Compute transitive closure
const closure = transitiveClosure(graph)
// Returns: Map<NodeId, Set<NodeId>>
```
### Centrality Algorithms
#### Degree Centrality
```typescript
import { degreeCentrality, nodeDegreeCentrality } from '@graphty/algorithms'
// Calculate for all nodes
const centralities = degreeCentrality(graph, {
normalized: boolean, // Default: false
weight: string // Optional: edge property for weighted degree
})
// Returns: CentralityResult (Record<string, number>)
// Calculate for single node
const centrality = nodeDegreeCentrality(graph, nodeId, { normalized: boolean })
// Returns: number
```
#### Betweenness Centrality
```typescript
import {
betweennessCentrality,
nodeBetweennessCentrality,
edgeBetweennessCentrality
} from '@graphty/algorithms'
// Node betweenness for all nodes
const centralities = betweennessCentrality(graph, {
normalized: boolean, // Default: false
weight: string, // Optional: use weighted shortest paths
endpoints: boolean // Default: false, include endpoints in paths
})
// Returns: CentralityResult (Record<string, number>)
// Single node betweenness
const centrality = nodeBetweennessCentrality(graph, nodeId, options)
// Returns: number
// Edge betweenness
const edgeCentralities = edgeBetweennessCentrality(graph, options)
// Returns: Map<string, number> (edge ID to centrality)
```
#### Closeness Centrality
```typescript
import {
closenessCentrality,
nodeClosenessCentrality,
weightedClosenessCentrality
} from '@graphty/algorithms'
// Closeness for all nodes
const centralities = closenessCentrality(graph, {
normalized: boolean // Default: false
})
// Returns: CentralityResult (Record<string, number>)
// Single node closeness
const centrality = nodeClosenessCentrality(graph, nodeId, {
normalized: boolean
})
// Returns: number
// Weighted closeness
const centralities = weightedClosenessCentrality(graph, {
normalized: boolean,
weight: string // Edge property for weights
})
// Returns: CentralityResult (Record<string, number>)
// Single node weighted closeness
const centrality = nodeWeightedClosenessCentrality(graph, nodeId, {
normalized: boolean,
weight: string // Edge property for weights
})
// Returns: number
```
#### PageRank
```typescript
import {
pageRank,
personalizedPageRank,
topPageRankNodes
} from '@graphty/algorithms'
// Standard PageRank
const result = pageRank(graph, {
dampingFactor: number, // Default: 0.85
maxIterations: number, // Default: 100
tolerance: number, // Default: 1e-6
initialRanks: Record<string, number>,
personalization: Record<string, number>
})
// Returns: { ranks: Record<string, number>, iterations: number, converged: boolean }
// Personalized PageRank (with bias)
const ranks = personalizedPageRank(graph, personalization, options)
// personalization: Map<NodeId, number> - restart probabilities
// Returns: CentralityResult (Record<string, number>)
// Get top N nodes by PageRank
const topNodes = topPageRankNodes(graph, n, options)
// Returns: Array<{ node: NodeId, rank: number }>
// Alternative PageRank that returns CentralityResult format
const centralities = pageRankCentrality(graph, options)
// Returns: CentralityResult (Record<string, number>)
```
#### Eigenvector Centrality
```typescript
import {
eigenvectorCentrality,
nodeEigenvectorCentrality
} from '@graphty/algorithms'
// Calculate eigenvector centrality for all nodes
const centralities = eigenvectorCentrality(graph, {
maxIterations: number, // Default: 100
tolerance: number // Default: 1e-6
})
// Returns: CentralityResult (Record<string, number>)
// Single node eigenvector centrality
const centrality = nodeEigenvectorCentrality(graph, nodeId, options)
// Returns: number
```
#### Katz Centrality
```typescript
import { katzCentrality, nodeKatzCentrality } from '@graphty/algorithms'
// Calculate Katz centrality for all nodes
const centralities = katzCentrality(graph, {
alpha: number, // Attenuation factor (default: 0.1)
beta: number, // Weight for direct connections (default: 1.0)
maxIterations: number, // Default: 100
tolerance: number, // Default: 1e-6
normalized: boolean // Default: true
})
// Returns: CentralityResult (Record<string, number>)
// Single node Katz centrality
const centrality = nodeKatzCentrality(graph, nodeId, options)
// Returns: number
```
#### HITS Algorithm
```typescript
import { hits, nodeHITS } from '@graphty/algorithms'
// Calculate hub and authority scores
const result = hits(graph, {
maxIterations: number, // Default: 100
tolerance: number // Default: 1e-6
})
// Returns: HITSResult { hubs: CentralityResult, authorities: CentralityResult }
// Single node HITS scores
const scores = nodeHITS(graph, nodeId, options)
// Returns: { hub: number, authority: number }
```
### Connected Components
#### Basic Component Operations
```typescript
import {
connectedComponents,
isConnected,
numberOfConnectedComponents,
largestConnectedComponent,
getConnectedComponent
} from '@graphty/algorithms'
// Find all components
const components = connectedComponents(graph)
// Returns: NodeId[][] (array of component arrays)
// Check if graph is connected
const connected = isConnected(graph)
// Returns: boolean
// Count components
const count = numberOfConnectedComponents(graph)
// Returns: number
// Get largest component
const largest = largestConnectedComponent(graph)
// Returns: NodeId[]
// Get component containing a specific node
const component = getConnectedComponent(graph, nodeId)
// Returns: Set<NodeId>
```
#### Strongly Connected Components
```typescript
import {
stronglyConnectedComponents,
findStronglyConnectedComponents,
isStronglyConnected,
condensationGraph
} from '@graphty/algorithms'
// Find SCCs using Tarjan's algorithm
const sccs = stronglyConnectedComponents(graph)
// Returns: ComponentResult
// Alternative: using DFS
const sccs = findStronglyConnectedComponents(graph)
// Returns: NodeId[][]
// Check if directed graph is strongly connected
const stronglyConnected = isStronglyConnected(graph)
// Returns: boolean
// Create condensation graph (DAG of SCCs)
const condensation = condensationGraph(graph)
// Returns: { graph: Graph, componentMap: Map<NodeId, number> }
// Alternative DFS-based connected components
const components = connectedComponentsDFS(graph)
// Returns: ComponentResult
```
#### Weakly Connected Components
```typescript
import {
weaklyConnectedComponents,
isWeaklyConnected
} from '@graphty/algorithms'
// Find WCCs (ignoring edge direction)
const wccs = weaklyConnectedComponents(graph)
// Returns: ComponentResult
// Check if directed graph is weakly connected
const weaklyConnected = isWeaklyConnected(graph)
// Returns: boolean
```
### Data Structures
#### Priority Queue
Min-heap implementation used internally by algorithms.
```typescript
import { PriorityQueue } from '@graphty/algorithms'
const pq = new PriorityQueue<T>((a, b) => a.priority - b.priority)
pq.enqueue(item)
pq.dequeue()
pq.peek()
pq.isEmpty()
pq.size
pq.clear()
```
#### Union-Find (Disjoint Set)
Efficient data structure for tracking connected components.
```typescript
import { UnionFind } from '@graphty/algorithms'
const uf = new UnionFind<T>()
uf.makeSet(item)
uf.find(item)
uf.union(item1, item2)
uf.connected(item1, item2)
uf.getSetSize(item)
uf.numberOfSets
```
### Minimum Spanning Tree Algorithms
#### Kruskal's Algorithm
```typescript
import { kruskalMST, minimumSpanningTree } from '@graphty/algorithms'
// Find MST using Kruskal's algorithm
const mst = kruskalMST(graph)
// Returns: { edges: Edge[], weight: number }
// Alternative alias
const mst = minimumSpanningTree(graph)
```
#### Prim's Algorithm
```typescript
import { primMST } from '@graphty/algorithms';
// Find MST using Prim's algorithm
const mst = primMST(graph, startNode?);
// Returns: { edges: Edge[], weight: number }
```
### Community Detection Algorithms
#### Louvain Method
```typescript
import { louvain } from '@graphty/algorithms'
// Detect communities using Louvain method
const communities = louvain(graph, {
resolution: number, // Default: 1.0
randomSeed: number
})
// Returns: { communities: Map<NodeId, number>, modularity: number }
```
#### Leiden Algorithm
```typescript
import { leiden } from '@graphty/algorithms'
// Improved community detection
const communities = leiden(graph, {
resolution: number, // Default: 1.0
iterations: number, // Default: 10
randomSeed: number
})
// Returns: { communities: Map<NodeId, number>, modularity: number }
```
#### Label Propagation
```typescript
import {
labelPropagation,
labelPropagationAsync,
labelPropagationSemiSupervised
} from '@graphty/algorithms'
// Basic label propagation
const labels = labelPropagation(graph, {
maxIterations: number // Default: 100
})
// Returns: Map<NodeId, number>
// Asynchronous version
const labels = labelPropagationAsync(graph, options)
// Semi-supervised with seed communities
const labels = labelPropagationSemiSupervised(graph, seedLabels, options)
```
#### Girvan-Newman Algorithm
```typescript
import { girvanNewman } from '@graphty/algorithms'
// Edge betweenness based community detection
const dendrogram = girvanNewman(graph, {
targetCommunities: number // Stop at this many communities
})
// Returns: { levels: Array<{ modularity: number, communities: NodeId[][] }> }
```
### Pathfinding Algorithms
#### A\* Algorithm
```typescript
import { astar } from '@graphty/algorithms'
// A* pathfinding with heuristic
const path = astar(
graph, // Map<T, Map<T, number>> adjacency list
start,
goal,
heuristic // (node: T, goal: T) => number
)
// Returns: { path: T[], cost: number } | null
```
### Flow Algorithms
#### Maximum Flow
```typescript
import { fordFulkerson, edmondsKarp } from '@graphty/algorithms';
// Ford-Fulkerson using DFS
const flow = fordFulkerson(graph, source, sink, {
capacityKey?: string // Edge property for capacity
});
// Returns: { maxFlow: number, flowGraph: Map<NodeId, Map<NodeId, number>> }
// Edmonds-Karp using BFS (better complexity)
const flow = edmondsKarp(graph, source, sink, options);
// Create bipartite flow network
const flowNetwork = createBipartiteFlowNetwork(leftNodes, rightNodes, edges, capacities?);
// Returns: FlowNetwork
```
#### Minimum Cut
```typescript
import { minSTCut, stoerWagner, kargerMinCut } from '@graphty/algorithms';
// Min s-t cut using max flow
const cut = minSTCut(graph, source, sink);
// Returns: { cutValue: number, sourcePartition: Set<NodeId>, sinkPartition: Set<NodeId> }
// Global minimum cut (Stoer-Wagner)
const cut = stoerWagner(graph);
// Returns: { cutValue: number, partition1: Set<NodeId>, partition2: Set<NodeId> }
// Randomized min cut (Karger)
const cut = kargerMinCut(graph, iterations?);
// Returns: { cutValue: number, partition1: Set<NodeId>, partition2: Set<NodeId> }
```
### Clustering Algorithms
#### Hierarchical Clustering
```typescript
import {
hierarchicalClustering,
cutDendrogram,
cutDendrogramKClusters
} from '@graphty/algorithms'
// Agglomerative clustering
const result = hierarchicalClustering(graph, linkage)
// graph: Map<NodeId, Set<NodeId>>
// linkage: 'single' | 'complete' | 'average' | 'ward' (default: 'single')
// Returns: HierarchicalClusteringResult { root: ClusterNode, dendrogram: ClusterNode[], clusters: Map<number, Set<NodeId>[]> }
// Cut at specific height
const clusters = cutDendrogram(result.root, height)
// Returns: Set<NodeId>[]
// Get exactly k clusters
const clusters = cutDendrogramKClusters(result.root, k)
// Returns: Set<NodeId>[]
```
#### K-Core Decomposition
```typescript
import {
kCoreDecomposition,
getKCore,
kTruss,
degeneracyOrdering
} from '@graphty/algorithms'
// Find all k-cores
const result = kCoreDecomposition(graph)
// graph: Map<NodeId, Set<NodeId>>
// Returns: KCoreResult { cores: Map<number, Set<NodeId>>, coreness: Map<NodeId, number>, maxCore: number }
// Extract specific k-core subgraph
const kCore = getKCore(graph, k)
// Returns: Set<NodeId>
// Find k-truss (triangular cores)
const truss = kTruss(graph, k)
// Returns: Set<string> (edge strings)
// Degeneracy ordering
const ordering = degeneracyOrdering(graph)
// Returns: NodeId[]
```
#### Spectral Clustering
```typescript
import { spectralClustering } from '@graphty/algorithms'
// Spectral clustering using graph Laplacian
const result = spectralClustering(graph, {
k: number, // Number of clusters
laplacianType: 'unnormalized' | 'normalized' | 'randomWalk', // Default: 'normalized'
maxIterations: number, // Default: 100
tolerance: number // Default: 1e-4
})
// Returns: SpectralClusteringResult { communities: NodeId[][], clusterAssignments: Map<NodeId, number> }
```
#### Markov Clustering (MCL)
```typescript
import { markovClustering, calculateMCLModularity } from '@graphty/algorithms'
// MCL algorithm for network clustering
const result = markovClustering(graph, {
expansion: number, // Expansion parameter (default: 2)
inflation: number, // Inflation parameter (default: 2)
maxIterations: number, // Default: 100
tolerance: number // Default: 1e-6
})
// Returns: MCLResult { communities: NodeId[][], attractors: Set<NodeId>, iterations: number, converged: boolean }
// Calculate modularity of MCL clustering result
const modularity = calculateMCLModularity(graph, result.communities)
// Returns: number
```
### Matching Algorithms
#### Bipartite Matching
```typescript
import {
maximumBipartiteMatching,
greedyBipartiteMatching,
bipartitePartition
} from '@graphty/algorithms'
// Maximum bipartite matching (Hungarian algorithm)
const matching = maximumBipartiteMatching(graph, {
leftNodes: Set<NodeId>, // Optional: specify left partition
rightNodes: Set<NodeId> // Optional: specify right partition
})
// Returns: BipartiteMatchingResult { matching: Map<NodeId, NodeId>, size: number }
// Greedy bipartite matching (faster, approximate)
const matching = greedyBipartiteMatching(graph, options)
// Partition graph into bipartite sets
const partition = bipartitePartition(graph)
// Returns: { left: Set<NodeId>, right: Set<NodeId> } | null
```
#### Graph Isomorphism
```typescript
import { isGraphIsomorphic, findAllIsomorphisms } from '@graphty/algorithms'
// Check if two graphs are isomorphic
const result = isGraphIsomorphic(graph1, graph2, {
nodeMatch: (node1: NodeId, node2: NodeId, g1: Graph, g2: Graph) => boolean,
edgeMatch: (
edge1: [NodeId, NodeId],
edge2: [NodeId, NodeId],
g1: Graph,
g2: Graph
) => boolean,
findAllMappings: boolean // Find all possible isomorphisms
})
// Returns: IsomorphismResult { isIsomorphic: boolean, mapping?: Map<NodeId, NodeId> }
// Find all isomorphism mappings
const mappings = findAllIsomorphisms(graph1, graph2, options)
// Returns: Array<Map<NodeId, NodeId>>
```
### Link Prediction Algorithms
#### Common Neighbors
```typescript
import {
commonNeighborsScore,
commonNeighborsPrediction,
commonNeighborsForPairs
} from '@graphty/algorithms'
// Score for a specific pair
const score = commonNeighborsScore(graph, node1, node2)
// Returns: number
// Predict links for all non-connected pairs
const predictions = commonNeighborsPrediction(graph, {
directed: boolean, // Consider direction
includeExisting: boolean, // Include existing edges
topK: number // Return only top K predictions
})
// Returns: LinkPredictionScore[]
// Score multiple specific pairs
const scores = commonNeighborsForPairs(graph, pairs, options)
// Returns: LinkPredictionScore[]
// Evaluate prediction performance
const evaluation = evaluateCommonNeighbors(graph, testEdges)
// Returns: { precision, recall, f1Score }
// Get top candidates for a node
const candidates = getTopCandidatesForNode(graph, nodeId, { topK: number })
// Returns: LinkPredictionScore[]
```
#### Adamic-Adar Index
```typescript
import {
adamicAdarScore,
adamicAdarPrediction,
adamicAdarForPairs
} from '@graphty/algorithms'
// Adamic-Adar score for a pair (weighted by neighbor degrees)
const score = adamicAdarScore(graph, node1, node2)
// Returns: number
// Predict links using Adamic-Adar
const predictions = adamicAdarPrediction(graph, {
directed: boolean,
includeExisting: boolean,
topK: number
})
// Returns: LinkPredictionScore[]
// Score multiple pairs
const scores = adamicAdarForPairs(graph, pairs, options)
// Returns: LinkPredictionScore[]
// Compare Adamic-Adar with Common Neighbors
const comparison = compareAdamicAdarWithCommonNeighbors(graph, pairs)
// Returns: Array<{ source, target, adamicAdar, commonNeighbors }>
// Evaluate prediction performance
const evaluation = evaluateAdamicAdar(graph, testEdges)
// Returns: { precision, recall, f1Score }
// Get top candidates for a node
const candidates = getTopAdamicAdarCandidatesForNode(graph, nodeId, {
topK: number
})
// Returns: LinkPredictionScore[]
```
### Research Algorithms (2023-2025)
Cutting-edge graph algorithms based on recent research.
#### SynC - Synergistic Deep Graph Clustering
```typescript
import { syncClustering } from '@graphty/algorithms'
// Deep learning based clustering
const result = syncClustering(graph, {
k: number, // Number of clusters
maxIterations: number, // Default: 100
learningRate: number, // Default: 0.01
hiddenDim: number, // Default: 64
randomSeed: number
})
// Returns: SynCResult {
// communities: NodeId[][],
// clusterAssignments: Map<NodeId, number>,
// embeddings: Map<NodeId, number[]>,
// iterations: number,
// converged: boolean
// }
```
#### TeraHAC - Scalable Hierarchical Agglomerative Clustering
```typescript
import { teraHAC } from '@graphty/algorithms'
// Scalable hierarchical clustering
const result = teraHAC(graph, {
linkage: 'single' | 'complete' | 'average', // Default: 'average'
k: number, // Target number of clusters
threshold: number, // Distance threshold for merging
sampleSize: number, // Default: 1000
randomSeed: number
})
// Returns: TeraHACResult {
// root: TeraHACClusterNode,
// dendrogram: TeraHACClusterNode[],
// clusters: NodeId[][],
// mergeDistances: number[]
// }
```
#### GRSBM - Greedy Recursive Spectral Bisection with Modularity
```typescript
import { grsbm } from '@graphty/algorithms'
// Explainable community detection
const result = grsbm(graph, {
minClusterSize: number, // Default: 5
maxDepth: number, // Default: 10
modularityThreshold: number, // Default: 0.1
explainClusters: boolean // Default: true
})
// Returns: GRSBMResult {
// clusters: GRSBMCluster[], // Each cluster has id, nodes, modularity, explanation
// hierarchy: Map<number, number[]>,
// totalModularity: number
// }
```
## Algorithm Categories Summary
### Available Algorithms by Category:
- **Traversal**: BFS, DFS, Topological Sort, Cycle Detection, Bipartite Check
- **Shortest Path**: Dijkstra, Bellman-Ford, Floyd-Warshall, A\*
- **Centrality**: Degree, Betweenness, Closeness, PageRank, Eigenvector, Katz, HITS
- **Components**: Connected, Strongly Connected, Weakly Connected, Condensation Graph
- **Community Detection**: Louvain, Leiden, Label Propagation, Girvan-Newman
- **Clustering**: Hierarchical, K-Core, Spectral, Markov (MCL)
- **Minimum Spanning Tree**: Kruskal, Prim
- **Network Flow**: Ford-Fulkerson, Edmonds-Karp, Min-Cut (Stoer-Wagner, Karger)
- **Matching**: Bipartite Matching, Graph Isomorphism
- **Link Prediction**: Common Neighbors, Adamic-Adar
- **Research Algorithms**: SynC, TeraHAC, GRSBM
## Interactive Examples
Try out all algorithms with interactive visualizations: **[Live Demo →](https://graphty-org.github.io/algorithms/)**
The library includes comprehensive examples demonstrating each algorithm. You can:
- **[Browse Interactive HTML Examples](https://graphty-org.github.io/algorithms/examples/)** - Visual demonstrations with step-by-step execution
- **[View Performance Benchmarks](https://graphty-org.github.io/algorithms/benchmarks/)** - Comparative analysis of algorithm performance
- **[Explore Code Examples](https://github.com/graphty-org/algorithms/tree/main/examples)** - Implementation examples for each algorithm
### Basic Algorithms
- [BFS Traversal](https://github.com/graphty-org/algorithms/blob/main/examples/bfs-example.js) - Breadth-first search and shortest paths
- [DFS Traversal](https://github.com/graphty-org/algorithms/blob/main/examples/dfs-example.js) - Depth-first search and applications
- [Dijkstra's Algorithm](https://github.com/graphty-org/algorithms/blob/main/examples/dijkstra-example.js) - Weighted shortest paths
- [Bellman-Ford](https://github.com/graphty-org/algorithms/blob/main/examples/bellman-ford-example.js) - Shortest paths with negative weights
- [Floyd-Warshall](https://github.com/graphty-org/algorithms/blob/main/examples/floyd-warshall-example.js) - All pairs shortest paths
### Centrality Measures
- [Degree Centrality](https://github.com/graphty-org/algorithms/blob/main/examples/degree-centrality-example.js) - Node importance by connections
- [Betweenness Centrality](https://github.com/graphty-org/algorithms/blob/main/examples/betweenness-centrality-example.js) - Bridge nodes
- [Closeness Centrality](https://github.com/graphty-org/algorithms/blob/main/examples/closeness-centrality-example.js) - Central nodes
- [PageRank](https://github.com/graphty-org/algorithms/blob/main/examples/pagerank-example.js) - Node ranking algorithm
- [Eigenvector Centrality](https://github.com/graphty-org/algorithms/blob/main/examples/eigenvector-centrality-example.js) - Influence from important nodes
- [Katz Centrality](https://github.com/graphty-org/algorithms/blob/main/examples/katz-centrality-example.js) - Weighted path counting
- [HITS Algorithm](https://github.com/graphty-org/algorithms/blob/main/examples/hits-algorithm-example.js) - Hub and authority scores
### Graph Structure
- [Connected Components](https://github.com/graphty-org/algorithms/blob/main/examples/connected-components-example.js) - Find graph components
- [Kruskal's MST](https://github.com/graphty-org/algorithms/blob/main/examples/kruskal-example.js) - Minimum spanning tree
- [Prim's MST](https://github.com/graphty-org/algorithms/blob/main/examples/prim-example.js) - Alternative MST algorithm
### Community Detection
- [Louvain Method](https://github.com/graphty-org/algorithms/blob/main/examples/louvain-example.js) - Modularity-based communities
- [Leiden Algorithm](https://github.com/graphty-org/algorithms/blob/main/examples/leiden-community.ts) - Improved Louvain
- [Label Propagation](https://github.com/graphty-org/algorithms/blob/main/examples/label-propagation.ts) - Fast community detection
- [Girvan-Newman](https://github.com/graphty-org/algorithms/blob/main/examples/girvan-newman-example.js) - Hierarchical communities
### Clustering
- [Hierarchical Clustering](https://github.com/graphty-org/algorithms/blob/main/examples/hierarchical-clustering.ts) - Graph clustering
- [K-Core Decomposition](https://github.com/graphty-org/algorithms/blob/main/examples/k-core-decomposition.ts) - Core analysis
- [Spectral Clustering](https://github.com/graphty-org/algorithms/blob/main/examples/spectral-clustering-example.js) - Eigenvalue-based clustering
- [MCL Clustering](https://github.com/graphty-org/algorithms/blob/main/examples/mcl-clustering-example.js) - Markov clustering
### Matching
- [Bipartite Matching](https://github.com/graphty-org/algorithms/blob/main/examples/bipartite-matching-example.js) - Job assignment, dating apps
- [Graph Isomorphism](https://github.com/graphty-org/algorithms/blob/main/examples/graph-isomorphism-example.js) - Structural equivalence
### Link Prediction
- [Common Neighbors](https://github.com/graphty-org/algorithms/blob/main/examples/common-neighbors-example.js) - Friend suggestions
- [Adamic-Adar](https://github.com/graphty-org/algorithms/blob/main/examples/adamic-adar-example.js) - Weighted predictions
### Advanced Algorithms
- [A\* Pathfinding](https://github.com/graphty-org/algorithms/blob/main/examples/astar-pathfinding.ts) - Heuristic pathfinding
- [Flow Algorithms](https://github.com/graphty-org/algorithms/blob/main/examples/flow-algorithms.ts) - Maximum flow and applications
- [Ford-Fulkerson Flow](https://github.com/graphty-org/algorithms/blob/main/examples/ford-fulkerson-flow.ts) - Maximum flow implementation
- [Minimum Cut](https://github.com/graphty-org/algorithms/blob/main/examples/min-cut.ts) - Graph partitioning
### Research Algorithms
- [SynC Clustering](https://github.com/graphty-org/algorithms/blob/main/examples/sync-example.js) - Deep learning based clustering
- [TeraHAC](https://github.com/graphty-org/algorithms/blob/main/examples/terahac-example.js) - Scalable hierarchical clustering
- [GRSBM](https://github.com/graphty-org/algorithms/blob/main/examples/grsbm-example.js) - Explainable community detection
## Advanced Usage Examples
### Working with Weighted Graphs
```typescript
const graph = new Graph()
// Add weighted edges
graph.addEdge('A', 'B', 5)
graph.addEdge('B', 'C', 3)
graph.addEdge('A', 'C', 10)
// Find shortest path considering weights
const result = dijkstra(graph, 'A')
const pathToC = dijkstraPath(graph, 'A', 'C')
console.log(pathToC) // { path: ['A', 'B', 'C'], distance: 8 }
```
### Directed Graphs
```typescript
const directedGraph = new Graph({ directed: true })
directedGraph.addEdge('A', 'B')
directedGraph.addEdge('B', 'C')
directedGraph.addEdge('C', 'A')
// Check for cycles
console.log(hasCycleDFS(directedGraph)) // true
// Find strongly connected components
const sccs = stronglyConnectedComponents(directedGraph)
console.log(sccs.components) // [['A', 'B', 'C']]
```
### Network Analysis
```typescript
// Identify important nodes
const graph = createSocialNetwork() // Your graph
// Find influencers (high PageRank)
const influencers = topPageRankNodes(graph, 10)
// Find bridges (high betweenness)
const bridgers = Array.from(betweennessCentrality(graph).entries())
.sort((a, b) => b[1] - a[1])
.slice(0, 10)
// Find communities (connected components)
const communities = connectedComponents(graph)
console.log(`Found ${communities.components.length} communities`)
```
### Custom Edge Properties
```typescript
const graph = new Graph()
// Add edges with custom data
graph.addEdge('A', 'B', 1, {
type: 'road',
distance: 100,
traffic: 'heavy'
})
// Use custom weight in algorithms
const result = dijkstra(graph, 'A', {
weightKey: 'distance' // Use 'distance' property as weight
})
```
### Graph Visualization Preparation
```typescript
// Prepare data for visualization
const graph = loadGraph()
// Calculate layout metrics
const centralities = degreeCentrality(graph, { normalized: true })
const ranks = pageRank(graph)
// Export for visualization
const nodes = Array.from(graph.nodes()).map(node => ({
id: node.id,
data: node.data,
size: centralities.get(node.id) || 0,
importance: ranks.get(node.id) || 0
}))
const edges = Array.from(graph.edges()).map(edge => ({
source: edge.source,
target: edge.target,
weight: edge.weight || 1,
data: edge.data
}))
```
## Type Definitions
### Core Types
```typescript
type NodeId = string | number
interface Node {
id: NodeId
data?: Record<string, unknown>
}
interface Edge {
source: NodeId
target: NodeId
weight?: number
id?: string
data?: Record<string, unknown>
}
```
### Algorithm Result Types
```typescript
interface TraversalResult {
visited: Set<NodeId>
order: NodeId[]
tree?: Map<NodeId, NodeId | null>
}
interface ShortestPathResult {
distance: number
path: NodeId[]
predecessor: Map<NodeId, NodeId | null>
}
interface BellmanFordResult {
distances: Map<NodeId, number>
previous: Map<NodeId, NodeId | null>
hasNegativeCycle: boolean
negativeCycleNodes?: NodeId[]
}
type CentralityResult = Record<string, number>
interface PageRankResult {
ranks: Record<string, number>
iterations: number
converged: boolean
}
interface CommunityResult {
communities: Map<NodeId, number>
modularity: number
}
interface ComponentResult {
components: NodeId[][]
componentMap: Map<NodeId, number>
}
interface HITSResult {
hubs: CentralityResult
authorities: CentralityResult
}
interface SpectralClusteringResult {
communities: NodeId[][]
clusterAssignments: Map<NodeId, number>
}
interface MCLResult {
communities: NodeId[][]
attractors: Set<NodeId>
iterations: number
converged: boolean
}
interface BipartiteMatchingResult {
matching: Map<NodeId, NodeId>
size: number
}
interface LinkPredictionScore {
source: NodeId
target: NodeId
score: number
}
interface HierarchicalClusteringResult<T> {
root: ClusterNode<T>
dendrogram: ClusterNode<T>[]
clusters: Map<number, Set<T>[]>
}
interface KCoreResult<T> {
cores: Map<number, Set<T>>
coreness: Map<T, number>
maxCore: number
}
interface IsomorphismResult {
isIsomorphic: boolean
mapping?: Map<NodeId, NodeId>
}
interface SynCResult {
communities: NodeId[][]
clusterAssignments: Map<NodeId, number>
embeddings: Map<NodeId, number[]>
iterations: number
converged: boolean
}
interface TeraHACResult {
root: TeraHACClusterNode
dendrogram: TeraHACClusterNode[]
clusters: NodeId[][]
mergeDistances: number[]
}
interface GRSBMResult {
clusters: GRSBMCluster[]
hierarchy: Map<number, number[]>
totalModularity: number
}
```
## Performance Considerations
- **Graph Representation**: Uses adjacency lists for O(1) neighbor access
- **Algorithm Complexity**:
- BFS/DFS: O(V + E)
- Dijkstra: O((V + E) log V) with binary heap
- Bellman-Ford: O(VE)
- Floyd-Warshall: O(V³)
- PageRank: O(k(V + E)) where k is iterations
- Connected Components: O(V + E)
- Kruskal's MST: O(E log E)
- Prim's MST: O((V + E) log V)
- A\*: O((V + E) log V) - depends on heuristic quality
- Ford-Fulkerson: O(E \* f) where f is max flow
- Edmonds-Karp: O(VE²)
- Louvain/Leiden: O(n log n) average case
- Hierarchical Clustering: O(n² log n)
- SynC: O(kni) where k is clusters, n is nodes, i is iterations
- TeraHAC: O(n log n) with sampling
- GRSBM: O(m log n) where m is edges
- **Memory Usage**: O(V + E) for graph storage
- **Browser Optimization**: Algorithms use iterative approaches where possible to avoid stack overflow
- **Performance Benchmarks**: View detailed performance comparisons at [https://graphty-org.github.io/algorithms/benchmarks/](https://graphty-org.github.io/algorithms/benchmarks/)
## Development
### Prerequisites
- Node.js 18+
- npm 9+
### Setup
```bash
# Clone the repository
git clone https://github.com/graphty-org/algorithms.git
cd algorithms
# Install dependencies
npm install
# Set up git hooks
npm run prepare
```
### Scripts
```bash
# Development
npm run dev # Watch mode compilation
npm run build # Build the library
npm run typecheck # Type checking
# Testing
npm run test # Run tests in watch mode
npm run test:run # Run tests once
npm run test:coverage # Generate coverage report
npm run test:browser # Run browser tests
# Code Quality
npm run lint # Run ESLint
npm run lint:fix # Fix ESLint issues
npm run lint:pkg # Check for unused dependencies
# Benchmarking
npm run benchmark # Run full benchmark suite
npm run benchmark:quick # Run quick benchmark
npm run benchmark:report # Generate performance report
# HTML Examples & Documentation
npm run examples:html # Run interactive HTML examples locally
npm run build:gh-pages # Build for GitHub Pages deployment
npm run examples:run # Run all code examples
# Git
npm run commit # Conventional commit helper
```
### Development Server
The project includes interactive HTML examples demonstrating each algorithm. To run them locally:
1. **Copy the environment configuration:**
```bash
cp .env.example .env
```
2. **Configure the server (optional):**
Edit `.env` to set your preferred host and port:
```bash
# Server host (defaults to true for network exposure)
HOST=localhost # For local-only access
# HOST=0.0.0.0 # For network access
# HOST=my.server.com # Custom domain
# Server port (defaults to 9000)
PORT=9000 # Must be between 9000-9099
```
3. **Start the development server:**
```bash
npm run examples:html
```
4. **Open your browser** to `http://localhost:9000` (or your configured host/port)
The HTML examples provide:
- Interactive visualizations for each algorithm
- Step-by-step execution with play/pause controls
- Multiple graph types for testing
- Real-time parameter adjustment
- Educational information about complexity and use cases
- Mobile debugging console (Eruda) for testing on mobile devices
### Project Structure
```
src/
├── core/ # Core graph data structures
├── algorithms/ # Algorithm implementations
│ ├── traversal/ # BFS, DFS
│ ├── shortest-path/ # Dijkstra, Bellman-Ford
│ ├── centrality/ # Degree, Betweenness, PageRank
│ └── components/ # Connected components
├── data-structures/ # Supporting data structures
├── types/ # TypeScript type definitions
└── utils/ # Utility functions
examples/
├── html/ # Interactive HTML examples
│ ├── shared/ # Shared utilities and styles
│ └── algorithms/ # Algorithm-specific examples
test/
├── unit/ # Unit tests
├── browser/ # Browser-specific tests
└── helpers/ # Test utilities
```
## Contributing
We welcome contributions! Please see our [Contributing Guide](CONTRIBUTING.md) for details.
### Commit Convention
This project uses [Conventional Commits](https://www.conventionalcommits.org/):
```
feat(scope): add new algorithm
fix(scope): resolve edge case in traversal
docs(scope): update API documentation
test(scope): add coverage for centrality measures
```
## License
MIT © Adam Powers
## Related Projects
- [@graphty/layout](https://github.com/graphty-org/layout) - Graph layout algorithms
- [@graphty/graphty-element](https://github.com/graphty-org/graphty-element) - 3D graph visualization web component