@gork-labs/secondbrain-mcp
Version:
Second Brain MCP Server - Agent team orchestration with dynamic tool discovery
308 lines (307 loc) • 10.2 kB
TypeScript
/**
* Machine Learning Engine for SecondBrain MCP
*
* Provides adaptive intelligence with ensemble methods and auto-optimization:
* - Ensemble predictions using multiple specialized models
* - A/B testing framework for continuous experimentation
* - Auto-optimization for parameter tuning and adaptation
* - Meta-learning capabilities for improved learning effectiveness
* - Predictive quality scoring and analytics (Phase 7 foundation)
*
* Author: @bohdan-shulha
* Created: 2025-07-24T23:19:59+02:00
* Phase: 8 - Ensemble Methods & Auto-Optimization (Adaptive Intelligence)
*/
import { AnalyticsManager } from '../analytics/analytics-manager.js';
import { EnhancedQualityAssessment, ValidationContext, MLPrediction, MLInsight, PredictiveAnalytics } from '../utils/types.js';
export interface MLEngineConfig {
enabled: boolean;
modelUpdateInterval: number;
minTrainingDataPoints: number;
predictionConfidenceThreshold: number;
adaptiveThresholdsEnabled: boolean;
autoOptimizationEnabled: boolean;
}
export interface PredictiveScoring {
predictedScore: number;
confidence: number;
predictionBasis: string[];
riskFactors: string[];
successFactors: string[];
}
export interface OptimizationSuggestion {
type: 'threshold' | 'rule_weight' | 'refinement_strategy';
component: string;
currentValue: number;
suggestedValue: number;
expectedImprovement: number;
confidence: number;
rationale: string;
}
export interface LearningPattern {
pattern: string;
frequency: number;
successRate: number;
contextFactors: string[];
recommendedActions: string[];
confidence: number;
}
export declare class MLEngine {
private analyticsManager;
private config;
private models;
private trainingData;
private lastModelUpdate;
private learningPatterns;
private optimizationHistory;
constructor(analyticsManager: AnalyticsManager, config?: Partial<MLEngineConfig>);
/**
* Initialize ML models for different prediction tasks
*/
private initializeModels;
/**
* Predict quality score for a given context before actual validation
*/
predictQualityScore(context: ValidationContext): Promise<PredictiveScoring>;
/**
* Predict refinement success probability
*/
predictRefinementSuccess(currentScore: number, context: ValidationContext, refinementAttempt: number): Promise<MLPrediction>;
/**
* Generate optimization suggestions based on ML analysis
*/
generateOptimizationSuggestions(): Promise<OptimizationSuggestion[]>;
/**
* Learn from validation results to improve predictions
*/
learnFromValidation(context: ValidationContext, assessment: EnhancedQualityAssessment, prediction?: PredictiveScoring): Promise<void>;
/**
* Get machine learning insights about system performance
*/
getMLInsights(): Promise<MLInsight[]>;
/**
* Phase 7: Advanced Predictive Analytics
* Generate comprehensive predictive analytics with forecasting and anomaly detection
*/
generatePredictiveAnalytics(): Promise<PredictiveAnalytics>;
/**
* Generate quality forecast using time series analysis
*/
private generateQualityForecast;
/**
* Detect anomalies in system behavior using statistical methods
*/
private detectAnomalies;
/**
* Analyze patterns across different chatmodes for correlations
*/
private analyzeCrossChatmodePatterns;
/**
* Generate proactive alerts based on detected patterns and anomalies
*/
private generateProactiveAlerts;
/**
* Extract features from validation context for ML models
*/
private extractFeatures;
/**
* Calculate content complexity based on technical terms and concepts
*/
private calculateContentComplexity;
/**
* Run inference using a trained model
*/
private runInference;
/**
* Calculate prediction confidence based on model and features
*/
private calculatePredictionConfidence;
/**
* Encode chatmode as numeric value for ML models
*/
private encodeChatmode;
/**
* Get quality threshold for a specific chatmode
*/
private getQualityThreshold;
/**
* Generate fallback prediction when ML is unavailable
*/
private fallbackPrediction;
/**
* Identify risk factors that might lead to poor quality
*/
private identifyRiskFactors;
/**
* Identify success factors that might lead to high quality
*/
private identifySuccessFactors;
/**
* Additional helper methods for ML operations
*/
private calculateTrend;
private analyzeIssueTypes;
private getPreviousRefinementSuccess;
private analyzeThresholdOptimization;
private analyzeRuleWeightOptimization;
private analyzeRefinementStrategyOptimization;
private updateLearningPatterns;
private shouldRetrain;
private retrainModels;
/**
* Get ML engine status and health
/**
* Get ML engine status and health
*/
getMLStatus(): {
enabled: boolean;
modelsLoaded: number;
trainingDataSize: number;
lastModelUpdate: number;
learningPatternsCount: number;
optimizationHistorySize: number;
modelAccuracies: {
[k: string]: number;
};
phase: string;
capabilities: string[];
};
/**
* Helper methods for ML optimization and learning
*/
private calculateVariance;
private calculateOptimalThreshold;
private estimateRuleScore;
private calculateCorrelation;
private updateContextFactors;
private updateRecommendedActions;
private extractFailurePatterns;
private extractSuccessPatterns;
/**
* Generate model-specific recommendations based on performance
*/
private generateModelRecommendation;
/**
* Format pattern names for better readability
*/
private formatPatternName;
/**
* Analyze training data distribution across chatmodes
*/
private analyzeDataDistribution;
/**
* Generate real-time adaptation insights
*/
private generateAdaptationInsights;
/**
* Calculate model drift score based on recent vs historical performance
*/
private calculateModelDrift;
/**
* Identify optimization opportunities based on patterns and performance
*/
private identifyOptimizationOpportunities;
/**
* Phase 7 Helper Methods for Advanced Predictive Analytics
*/
/**
* Calculate linear trend using least squares regression
*/
private calculateLinearTrend;
/**
* Detect anomalies using z-score method
*/
private detectZScoreAnomalies;
/**
* Detect pattern-based anomalies
*/
private detectPatternAnomalies;
/**
* Calculate correlation between two chatmodes
*/
private calculateChatmodeCorrelation;
/**
* Analyze processing time patterns across chatmodes
*/
private analyzeProcessingTimePatterns;
/**
* Analyze success rate patterns across chatmodes
*/
private analyzeSuccessRatePatterns;
/**
* Analyze performance trend for degradation detection
*/
private analyzePerformanceTrend;
/**
* Analyze quality trend for decline detection
*/
private analyzeQualityTrend;
/**
* Detect trend reversals in chatmode performance
*/
private detectTrendReversals;
/**
* Generate ensemble prediction using multiple specialized models
*/
generateEnsemblePrediction(context: ValidationContext): Promise<import('../utils/types.js').EnsemblePrediction>;
/**
* Configure and start A/B test experiment
*/
configureABTest(config: import('../utils/types.js').ABTestConfig): Promise<boolean>;
/**
* Evaluate A/B test results and provide recommendations
*/
evaluateABTestResults(experimentId: string): Promise<import('../utils/types.js').ABTestResult>;
/**
* Run auto-optimization for specified parameters
*/
runAutoOptimization(config: import('../utils/types.js').AutoOptimizationConfig): Promise<import('../utils/types.js').OptimizationResult>;
/**
* Generate meta-learning insights about learning effectiveness
*/
generateMetaLearningInsights(): Promise<import('../utils/types.js').MetaLearningInsight[]>;
/**
* Get comprehensive adaptive intelligence status
*/
getAdaptiveIntelligence(): Promise<import('../utils/types.js').AdaptiveIntelligence>;
private initializeEnsembleModels;
private getStatisticalModelPrediction;
private getPatternRecognitionPrediction;
private getDomainSpecificPrediction;
private getMetaLearningPrediction;
private calculateEnsembleVote;
private validateEnsemblePrediction;
private findSimilarCases;
private assessCurrentLearningEffectiveness;
private calculateAccuracyTrend;
private validateABTestConfig;
private findConflictingExperiments;
private initializeExperimentTracking;
private configureTrafficAllocation;
private startSafetyMonitoring;
private getExperimentData;
private calculateStatisticalSignificance;
private identifyWinningVariant;
private generateExperimentInsights;
private generateExperimentRecommendation;
private getExperimentStatus;
private calculateExperimentDuration;
private calculateStatisticalPower;
private initializeOptimizer;
private evaluateParametersSafely;
private checkSafetyConstraints;
private hasConverged;
private determineOptimizationStatus;
private getSafetyMetrics;
private analyzeLearningEfficiency;
private identifyTransferOpportunities;
private optimizeLearningCurriculum;
private analyzeFeatureImportance;
private analyzeModelCombinations;
private calculateChatmodeSimilarity;
private getRecentEnsemblePredictions;
private getActiveExperiments;
private getRecentExperimentResults;
private getRecentOptimizationResults;
private getRecentSystemAdaptations;
}