UNPKG

@gork-labs/secondbrain-mcp

Version:

Second Brain MCP Server - Agent team orchestration with dynamic tool discovery

308 lines (307 loc) 10.2 kB
/** * Machine Learning Engine for SecondBrain MCP * * Provides adaptive intelligence with ensemble methods and auto-optimization: * - Ensemble predictions using multiple specialized models * - A/B testing framework for continuous experimentation * - Auto-optimization for parameter tuning and adaptation * - Meta-learning capabilities for improved learning effectiveness * - Predictive quality scoring and analytics (Phase 7 foundation) * * Author: @bohdan-shulha * Created: 2025-07-24T23:19:59+02:00 * Phase: 8 - Ensemble Methods & Auto-Optimization (Adaptive Intelligence) */ import { AnalyticsManager } from '../analytics/analytics-manager.js'; import { EnhancedQualityAssessment, ValidationContext, MLPrediction, MLInsight, PredictiveAnalytics } from '../utils/types.js'; export interface MLEngineConfig { enabled: boolean; modelUpdateInterval: number; minTrainingDataPoints: number; predictionConfidenceThreshold: number; adaptiveThresholdsEnabled: boolean; autoOptimizationEnabled: boolean; } export interface PredictiveScoring { predictedScore: number; confidence: number; predictionBasis: string[]; riskFactors: string[]; successFactors: string[]; } export interface OptimizationSuggestion { type: 'threshold' | 'rule_weight' | 'refinement_strategy'; component: string; currentValue: number; suggestedValue: number; expectedImprovement: number; confidence: number; rationale: string; } export interface LearningPattern { pattern: string; frequency: number; successRate: number; contextFactors: string[]; recommendedActions: string[]; confidence: number; } export declare class MLEngine { private analyticsManager; private config; private models; private trainingData; private lastModelUpdate; private learningPatterns; private optimizationHistory; constructor(analyticsManager: AnalyticsManager, config?: Partial<MLEngineConfig>); /** * Initialize ML models for different prediction tasks */ private initializeModels; /** * Predict quality score for a given context before actual validation */ predictQualityScore(context: ValidationContext): Promise<PredictiveScoring>; /** * Predict refinement success probability */ predictRefinementSuccess(currentScore: number, context: ValidationContext, refinementAttempt: number): Promise<MLPrediction>; /** * Generate optimization suggestions based on ML analysis */ generateOptimizationSuggestions(): Promise<OptimizationSuggestion[]>; /** * Learn from validation results to improve predictions */ learnFromValidation(context: ValidationContext, assessment: EnhancedQualityAssessment, prediction?: PredictiveScoring): Promise<void>; /** * Get machine learning insights about system performance */ getMLInsights(): Promise<MLInsight[]>; /** * Phase 7: Advanced Predictive Analytics * Generate comprehensive predictive analytics with forecasting and anomaly detection */ generatePredictiveAnalytics(): Promise<PredictiveAnalytics>; /** * Generate quality forecast using time series analysis */ private generateQualityForecast; /** * Detect anomalies in system behavior using statistical methods */ private detectAnomalies; /** * Analyze patterns across different chatmodes for correlations */ private analyzeCrossChatmodePatterns; /** * Generate proactive alerts based on detected patterns and anomalies */ private generateProactiveAlerts; /** * Extract features from validation context for ML models */ private extractFeatures; /** * Calculate content complexity based on technical terms and concepts */ private calculateContentComplexity; /** * Run inference using a trained model */ private runInference; /** * Calculate prediction confidence based on model and features */ private calculatePredictionConfidence; /** * Encode chatmode as numeric value for ML models */ private encodeChatmode; /** * Get quality threshold for a specific chatmode */ private getQualityThreshold; /** * Generate fallback prediction when ML is unavailable */ private fallbackPrediction; /** * Identify risk factors that might lead to poor quality */ private identifyRiskFactors; /** * Identify success factors that might lead to high quality */ private identifySuccessFactors; /** * Additional helper methods for ML operations */ private calculateTrend; private analyzeIssueTypes; private getPreviousRefinementSuccess; private analyzeThresholdOptimization; private analyzeRuleWeightOptimization; private analyzeRefinementStrategyOptimization; private updateLearningPatterns; private shouldRetrain; private retrainModels; /** * Get ML engine status and health /** * Get ML engine status and health */ getMLStatus(): { enabled: boolean; modelsLoaded: number; trainingDataSize: number; lastModelUpdate: number; learningPatternsCount: number; optimizationHistorySize: number; modelAccuracies: { [k: string]: number; }; phase: string; capabilities: string[]; }; /** * Helper methods for ML optimization and learning */ private calculateVariance; private calculateOptimalThreshold; private estimateRuleScore; private calculateCorrelation; private updateContextFactors; private updateRecommendedActions; private extractFailurePatterns; private extractSuccessPatterns; /** * Generate model-specific recommendations based on performance */ private generateModelRecommendation; /** * Format pattern names for better readability */ private formatPatternName; /** * Analyze training data distribution across chatmodes */ private analyzeDataDistribution; /** * Generate real-time adaptation insights */ private generateAdaptationInsights; /** * Calculate model drift score based on recent vs historical performance */ private calculateModelDrift; /** * Identify optimization opportunities based on patterns and performance */ private identifyOptimizationOpportunities; /** * Phase 7 Helper Methods for Advanced Predictive Analytics */ /** * Calculate linear trend using least squares regression */ private calculateLinearTrend; /** * Detect anomalies using z-score method */ private detectZScoreAnomalies; /** * Detect pattern-based anomalies */ private detectPatternAnomalies; /** * Calculate correlation between two chatmodes */ private calculateChatmodeCorrelation; /** * Analyze processing time patterns across chatmodes */ private analyzeProcessingTimePatterns; /** * Analyze success rate patterns across chatmodes */ private analyzeSuccessRatePatterns; /** * Analyze performance trend for degradation detection */ private analyzePerformanceTrend; /** * Analyze quality trend for decline detection */ private analyzeQualityTrend; /** * Detect trend reversals in chatmode performance */ private detectTrendReversals; /** * Generate ensemble prediction using multiple specialized models */ generateEnsemblePrediction(context: ValidationContext): Promise<import('../utils/types.js').EnsemblePrediction>; /** * Configure and start A/B test experiment */ configureABTest(config: import('../utils/types.js').ABTestConfig): Promise<boolean>; /** * Evaluate A/B test results and provide recommendations */ evaluateABTestResults(experimentId: string): Promise<import('../utils/types.js').ABTestResult>; /** * Run auto-optimization for specified parameters */ runAutoOptimization(config: import('../utils/types.js').AutoOptimizationConfig): Promise<import('../utils/types.js').OptimizationResult>; /** * Generate meta-learning insights about learning effectiveness */ generateMetaLearningInsights(): Promise<import('../utils/types.js').MetaLearningInsight[]>; /** * Get comprehensive adaptive intelligence status */ getAdaptiveIntelligence(): Promise<import('../utils/types.js').AdaptiveIntelligence>; private initializeEnsembleModels; private getStatisticalModelPrediction; private getPatternRecognitionPrediction; private getDomainSpecificPrediction; private getMetaLearningPrediction; private calculateEnsembleVote; private validateEnsemblePrediction; private findSimilarCases; private assessCurrentLearningEffectiveness; private calculateAccuracyTrend; private validateABTestConfig; private findConflictingExperiments; private initializeExperimentTracking; private configureTrafficAllocation; private startSafetyMonitoring; private getExperimentData; private calculateStatisticalSignificance; private identifyWinningVariant; private generateExperimentInsights; private generateExperimentRecommendation; private getExperimentStatus; private calculateExperimentDuration; private calculateStatisticalPower; private initializeOptimizer; private evaluateParametersSafely; private checkSafetyConstraints; private hasConverged; private determineOptimizationStatus; private getSafetyMetrics; private analyzeLearningEfficiency; private identifyTransferOpportunities; private optimizeLearningCurriculum; private analyzeFeatureImportance; private analyzeModelCombinations; private calculateChatmodeSimilarity; private getRecentEnsemblePredictions; private getActiveExperiments; private getRecentExperimentResults; private getRecentOptimizationResults; private getRecentSystemAdaptations; }