UNPKG

@gork-labs/secondbrain-mcp

Version:

Second Brain MCP Server - Agent team orchestration with dynamic tool discovery

304 lines (231 loc) โ€ข 9.76 kB
# SecondBrain MCP Server [![npm version](https://badge.fury.io/js/@gork-labs%2Fsecondbrain-mcp.svg)](https://badge.fury.io/js/@gork-labs%2Fsecondbrain-mcp) [![License: MIT](https://img.shields.io/badge/License-MIT-yellow.svg)](https://opensource.org/licenses/MIT) **Multi-agent orchestration system with quality control, analytics, and ML-powered intelligence for specialized sub-agent delegation.** SecondBrain MCP Server enables primary AI agents to spawn and coordinate specialized sub-agents while maintaining quality control, preventing infinite loops, and optimizing costs through intelligent delegation. ## ๐Ÿš€ Features - **๐Ÿค– Multi-Agent Orchestration**: Spawn specialized sub-agents with domain expertise - **๐Ÿ”’ Loop Protection**: Sophisticated session management prevents infinite delegation - **โšก Quality Control**: 5-tier validation system with ML-powered assessment - **๐Ÿ“Š Real-time Analytics**: Performance monitoring and optimization insights - **๐Ÿง  ML Intelligence**: Predictive quality scoring and adaptive learning - **๐Ÿ’ฐ Cost Optimization**: 80% cost reduction through intelligent delegation - **๐ŸŽฏ 12 MCP Tools**: Comprehensive toolkit for agent coordination ## ๐Ÿ“ฆ Installation ```bash npm install -g @gork-labs/secondbrain-mcp ``` ## ๐Ÿ”ง Configuration **Required Environment Variables:** - `OPENROUTER_API_KEY`: Your OpenRouter API key for accessing AI models - `SECONDBRAIN_MODEL`: The model to use for sub-agents (e.g., `anthropic/claude-3-5-sonnet-20241022`) Add to your `mcp.json` configuration file: ```json { "mcpServers": { "secondbrain": { "command": "npx", "args": ["@gork-labs/secondbrain-mcp"], "env": { "OPENROUTER_API_KEY": "your-openrouter-api-key", "SECONDBRAIN_MODEL": "anthropic/claude-3-5-sonnet-20241022" } } } } ``` ### Environment Variables #### API Configuration - `OPENROUTER_API_KEY` - OpenRouter API key (required) #### Model Configuration - `SECONDBRAIN_PRIMARY_MODEL` - Primary model for orchestration (default: `anthropic/claude-3-5-sonnet-20241022`) - `SECONDBRAIN_SUBAGENT_MODEL` - Model for sub-agents (default: `anthropic/claude-3-5-haiku-20241022`) #### Session Management - `SECONDBRAIN_SESSION_PATH` - Custom session storage path (optional) - `SECONDBRAIN_MAX_CALLS` - Maximum calls per session (default: 20) ## ๐Ÿค– Model Support SecondBrain uses OpenRouter for unified access to all AI models: ### Available Models All models available through OpenRouter using standard `provider/model` format: - **Anthropic Models**: - `anthropic/claude-3-5-sonnet-20241022` - High-quality reasoning (default primary) - `anthropic/claude-3-5-haiku-20241022` - Fast, cost-effective (default sub-agents) - **OpenAI Models**: - `openai/gpt-4o` - OpenAI's latest flagship model - `openai/gpt-4o-mini` - Cost-effective option - **Google Models**: - `google/gemini-pro-1.5` - Google's latest model - `google/gemini-flash-1.5` - Fast inference - **Open Source Models**: - `meta-llama/llama-3.1-405b-instruct` - Large open source model - `mistralai/mixtral-8x7b-instruct` - Efficient mixture of experts ### Configuration Examples ```bash # Use Anthropic Claude Sonnet for primary (default) export SECONDBRAIN_PRIMARY_MODEL="anthropic/claude-3-5-sonnet-20241022" # Use Anthropic Claude Haiku for sub-agents (default) export SECONDBRAIN_SUBAGENT_MODEL="anthropic/claude-3-5-haiku-20241022" # Use OpenAI GPT-4O for primary export SECONDBRAIN_PRIMARY_MODEL="openai/gpt-4o" # Use Google Gemini for sub-agents export SECONDBRAIN_SUBAGENT_MODEL="google/gemini-flash-1.5" ``` ## ๐Ÿ› ๏ธ Available MCP Tools ### Core Agent Tools - **`spawn_agent`** - Spawn specialized sub-agents with domain expertise - **`list_subagents`** - List available specialized agent types - **`validate_output`** - Comprehensive quality control and validation - **`get_session_stats`** - Session tracking and loop protection metrics ### Analytics & Intelligence - **`get_quality_analytics`** - Quality trends and performance insights - **`get_performance_analytics`** - Performance optimization metrics - **`get_system_health`** - System status and health monitoring - **`generate_analytics_report`** - Comprehensive analytics reports ### ML-Powered Features - **`predict_quality_score`** - ML-based quality prediction - **`predict_refinement_success`** - Refinement success probability - **`get_ml_insights`** - Advanced ML insights and recommendations - **`get_optimization_suggestions`** - System optimization suggestions ## ๐ŸŽฏ Quick Start Example ```typescript ```typescript // Spawn a Security Engineer for vulnerability analysis const response = await mcp.callTool('spawn_agent', { subagent: 'Security Engineer', task: 'Analyze web application for security vulnerabilities', context: 'E-commerce platform with user authentication and payment processing', expected_deliverables: 'Vulnerability report with remediation recommendations' }); // Validate the sub-agent response const validation = await mcp.callTool('validate_output', { sub_agent_response: response.content[0].text, requirements: 'Security vulnerability analysis', quality_criteria: 'Must include specific vulnerabilities and remediation steps', subagent: 'Security Engineer', enable_refinement: true }); ``` // Get ML insights about system performance const insights = await mcp.callTool('get_ml_insights', {}); ``` ## ๐Ÿ—๏ธ Architecture ### Hub-and-Spoke Model ``` Primary Agent (GPT-4) โ”œโ”€โ”€ Security Engineer โ†’ Threat analysis โ”œโ”€โ”€ DevOps Engineer โ†’ Infrastructure review โ”œโ”€โ”€ Database Architect โ†’ Data security โ””โ”€โ”€ Coordination & Validation โ†’ Final report ``` ### Cost Optimization - **Traditional**: 100% expensive model usage - **SecondBrain**: 20% primary (GPT-4) + 80% specialized (o4-mini) - **Result**: ~80% cost reduction with maintained quality ### Quality Control Pipeline 1. **Format Validation** - JSON structure and completeness 2. **Content Assessment** - Deliverables and quality scoring 3. **ML Enhancement** - Predictive assessment and learning 4. **Refinement Management** - Iterative improvement tracking 5. **Analytics Integration** - Performance monitoring and insights ## ๐Ÿ“Š Specialized Agent Types | Agent Type | Expertise | Use Cases | |------------|-----------|-----------| | Security Engineer | Security analysis, vulnerability assessment | Code review, threat modeling, compliance | | DevOps Engineer | Infrastructure, deployment, monitoring | CI/CD, scaling, performance optimization | | Database Architect | Data modeling, performance, security | Schema design, query optimization, backup | | Software Architect | System design, patterns, scalability | Architecture decisions, technical strategy | | Test Engineer | Testing strategies, automation, QA | Test planning, coverage analysis, automation | ## ๐Ÿ” Quality Metrics The system tracks comprehensive quality metrics: - **Overall Quality Score** (0-100): Weighted assessment across all dimensions - **Rule-based Validation**: 5 universal quality rules - **ML-Powered Assessment**: Predictive scoring and confidence levels - **Refinement Success Rate**: Learning-based improvement tracking - **Cross-Agent Performance**: Comparative analysis across specializations ## ๐Ÿ“ˆ Analytics Capabilities ### Real-time Monitoring - Agent performance tracking - Quality trend analysis - Cost optimization metrics - Session management stats ### ML Intelligence - Ensemble prediction models - Cross-chatmode pattern analysis - Optimization opportunity identification - Adaptive learning and improvement ### Reporting - Executive summaries - Detailed technical reports - Performance optimization insights - System health monitoring ## ๐Ÿ›ก๏ธ Loop Protection SecondBrain implements sophisticated loop protection: - **Session Management**: Call limits and refinement tracking - **Agent Restrictions**: Sub-agents cannot spawn other agents - **Resource Limits**: Maximum 20 calls per session, 2 refinement iterations - **Quality Thresholds**: Chatmode-specific quality requirements - **Timeout Protection**: Automatic session cleanup and resource management ## ๐Ÿ”ง Advanced Configuration ### Custom Quality Thresholds ```json { "qualityThresholds": { "Security Engineer": 0.80, "DevOps Engineer": 0.75, "default": 0.75 } } ``` ### Analytics Configuration ```json { "analytics": { "enabled": true, "retentionDays": 30, "mlInsights": true } } ``` ## ๐Ÿงช Development ```bash git clone https://github.com/gork-labs/gorka.git cd gorka/servers/secondbrain-mcp npm install npm run build npm test ``` ### Running Tests ```bash # Run all tests npm test # Run with coverage npm run test:coverage # Watch mode npm run test:watch ``` ## ๐Ÿ“‹ Requirements - **Node.js**: >= 18.0.0 - **API Keys**: OpenAI and/or Anthropic API access - **MCP Client**: Compatible MCP client (GitHub Copilot, Claude Desktop, etc.) ## ๐Ÿค Contributing 1. Fork the repository 2. Create a feature branch 3. Make your changes 4. Add tests for new functionality 5. Ensure all tests pass 6. Submit a pull request ## ๐Ÿ“„ License MIT License - see [LICENSE](LICENSE) file for details. ## ๐Ÿ”— Links - [GitHub Repository](https://github.com/gork-labs/gorka) - [Model Context Protocol](https://modelcontextprotocol.io/) - [Gorka AI Agent System](https://github.com/gork-labs/gorka) - [Issue Tracker](https://github.com/gork-labs/gorka/issues) ## โญ Support If you find SecondBrain MCP Server useful, please consider: - โญ Starring the repository - ๐Ÿ› Reporting issues - ๐Ÿ’ก Suggesting improvements - ๐Ÿค Contributing code --- **Built with โค๏ธ by the Gorka team** | **Powered by Model Context Protocol**