@gork-labs/secondbrain-mcp
Version:
Second Brain MCP Server - Agent team orchestration with dynamic tool discovery
304 lines (231 loc) โข 9.76 kB
Markdown
# SecondBrain MCP Server
[](https://badge.fury.io/js/@gork-labs%2Fsecondbrain-mcp)
[](https://opensource.org/licenses/MIT)
**Multi-agent orchestration system with quality control, analytics, and ML-powered intelligence for specialized sub-agent delegation.**
SecondBrain MCP Server enables primary AI agents to spawn and coordinate specialized sub-agents while maintaining quality control, preventing infinite loops, and optimizing costs through intelligent delegation.
## ๐ Features
- **๐ค Multi-Agent Orchestration**: Spawn specialized sub-agents with domain expertise
- **๐ Loop Protection**: Sophisticated session management prevents infinite delegation
- **โก Quality Control**: 5-tier validation system with ML-powered assessment
- **๐ Real-time Analytics**: Performance monitoring and optimization insights
- **๐ง ML Intelligence**: Predictive quality scoring and adaptive learning
- **๐ฐ Cost Optimization**: 80% cost reduction through intelligent delegation
- **๐ฏ 12 MCP Tools**: Comprehensive toolkit for agent coordination
## ๐ฆ Installation
```bash
npm install -g @gork-labs/secondbrain-mcp
```
## ๐ง Configuration
**Required Environment Variables:**
- `OPENROUTER_API_KEY`: Your OpenRouter API key for accessing AI models
- `SECONDBRAIN_MODEL`: The model to use for sub-agents (e.g., `anthropic/claude-3-5-sonnet-20241022`)
Add to your `mcp.json` configuration file:
```json
{
"mcpServers": {
"secondbrain": {
"command": "npx",
"args": ["@gork-labs/secondbrain-mcp"],
"env": {
"OPENROUTER_API_KEY": "your-openrouter-api-key",
"SECONDBRAIN_MODEL": "anthropic/claude-3-5-sonnet-20241022"
}
}
}
}
```
### Environment Variables
#### API Configuration
- `OPENROUTER_API_KEY` - OpenRouter API key (required)
#### Model Configuration
- `SECONDBRAIN_PRIMARY_MODEL` - Primary model for orchestration (default: `anthropic/claude-3-5-sonnet-20241022`)
- `SECONDBRAIN_SUBAGENT_MODEL` - Model for sub-agents (default: `anthropic/claude-3-5-haiku-20241022`)
#### Session Management
- `SECONDBRAIN_SESSION_PATH` - Custom session storage path (optional)
- `SECONDBRAIN_MAX_CALLS` - Maximum calls per session (default: 20)
## ๐ค Model Support
SecondBrain uses OpenRouter for unified access to all AI models:
### Available Models
All models available through OpenRouter using standard `provider/model` format:
- **Anthropic Models**:
- `anthropic/claude-3-5-sonnet-20241022` - High-quality reasoning (default primary)
- `anthropic/claude-3-5-haiku-20241022` - Fast, cost-effective (default sub-agents)
- **OpenAI Models**:
- `openai/gpt-4o` - OpenAI's latest flagship model
- `openai/gpt-4o-mini` - Cost-effective option
- **Google Models**:
- `google/gemini-pro-1.5` - Google's latest model
- `google/gemini-flash-1.5` - Fast inference
- **Open Source Models**:
- `meta-llama/llama-3.1-405b-instruct` - Large open source model
- `mistralai/mixtral-8x7b-instruct` - Efficient mixture of experts
### Configuration Examples
```bash
# Use Anthropic Claude Sonnet for primary (default)
export SECONDBRAIN_PRIMARY_MODEL="anthropic/claude-3-5-sonnet-20241022"
# Use Anthropic Claude Haiku for sub-agents (default)
export SECONDBRAIN_SUBAGENT_MODEL="anthropic/claude-3-5-haiku-20241022"
# Use OpenAI GPT-4O for primary
export SECONDBRAIN_PRIMARY_MODEL="openai/gpt-4o"
# Use Google Gemini for sub-agents
export SECONDBRAIN_SUBAGENT_MODEL="google/gemini-flash-1.5"
```
## ๐ ๏ธ Available MCP Tools
### Core Agent Tools
- **`spawn_agent`** - Spawn specialized sub-agents with domain expertise
- **`list_subagents`** - List available specialized agent types
- **`validate_output`** - Comprehensive quality control and validation
- **`get_session_stats`** - Session tracking and loop protection metrics
### Analytics & Intelligence
- **`get_quality_analytics`** - Quality trends and performance insights
- **`get_performance_analytics`** - Performance optimization metrics
- **`get_system_health`** - System status and health monitoring
- **`generate_analytics_report`** - Comprehensive analytics reports
### ML-Powered Features
- **`predict_quality_score`** - ML-based quality prediction
- **`predict_refinement_success`** - Refinement success probability
- **`get_ml_insights`** - Advanced ML insights and recommendations
- **`get_optimization_suggestions`** - System optimization suggestions
## ๐ฏ Quick Start Example
```typescript
```typescript
// Spawn a Security Engineer for vulnerability analysis
const response = await mcp.callTool('spawn_agent', {
subagent: 'Security Engineer',
task: 'Analyze web application for security vulnerabilities',
context: 'E-commerce platform with user authentication and payment processing',
expected_deliverables: 'Vulnerability report with remediation recommendations'
});
// Validate the sub-agent response
const validation = await mcp.callTool('validate_output', {
sub_agent_response: response.content[0].text,
requirements: 'Security vulnerability analysis',
quality_criteria: 'Must include specific vulnerabilities and remediation steps',
subagent: 'Security Engineer',
enable_refinement: true
});
```
// Get ML insights about system performance
const insights = await mcp.callTool('get_ml_insights', {});
```
## ๐๏ธ Architecture
### Hub-and-Spoke Model
```
Primary Agent (GPT-4)
โโโ Security Engineer โ Threat analysis
โโโ DevOps Engineer โ Infrastructure review
โโโ Database Architect โ Data security
โโโ Coordination & Validation โ Final report
```
### Cost Optimization
- **Traditional**: 100% expensive model usage
- **SecondBrain**: 20% primary (GPT-4) + 80% specialized (o4-mini)
- **Result**: ~80% cost reduction with maintained quality
### Quality Control Pipeline
1. **Format Validation** - JSON structure and completeness
2. **Content Assessment** - Deliverables and quality scoring
3. **ML Enhancement** - Predictive assessment and learning
4. **Refinement Management** - Iterative improvement tracking
5. **Analytics Integration** - Performance monitoring and insights
## ๐ Specialized Agent Types
| Agent Type | Expertise | Use Cases |
|------------|-----------|-----------|
| Security Engineer | Security analysis, vulnerability assessment | Code review, threat modeling, compliance |
| DevOps Engineer | Infrastructure, deployment, monitoring | CI/CD, scaling, performance optimization |
| Database Architect | Data modeling, performance, security | Schema design, query optimization, backup |
| Software Architect | System design, patterns, scalability | Architecture decisions, technical strategy |
| Test Engineer | Testing strategies, automation, QA | Test planning, coverage analysis, automation |
## ๐ Quality Metrics
The system tracks comprehensive quality metrics:
- **Overall Quality Score** (0-100): Weighted assessment across all dimensions
- **Rule-based Validation**: 5 universal quality rules
- **ML-Powered Assessment**: Predictive scoring and confidence levels
- **Refinement Success Rate**: Learning-based improvement tracking
- **Cross-Agent Performance**: Comparative analysis across specializations
## ๐ Analytics Capabilities
### Real-time Monitoring
- Agent performance tracking
- Quality trend analysis
- Cost optimization metrics
- Session management stats
### ML Intelligence
- Ensemble prediction models
- Cross-chatmode pattern analysis
- Optimization opportunity identification
- Adaptive learning and improvement
### Reporting
- Executive summaries
- Detailed technical reports
- Performance optimization insights
- System health monitoring
## ๐ก๏ธ Loop Protection
SecondBrain implements sophisticated loop protection:
- **Session Management**: Call limits and refinement tracking
- **Agent Restrictions**: Sub-agents cannot spawn other agents
- **Resource Limits**: Maximum 20 calls per session, 2 refinement iterations
- **Quality Thresholds**: Chatmode-specific quality requirements
- **Timeout Protection**: Automatic session cleanup and resource management
## ๐ง Advanced Configuration
### Custom Quality Thresholds
```json
{
"qualityThresholds": {
"Security Engineer": 0.80,
"DevOps Engineer": 0.75,
"default": 0.75
}
}
```
### Analytics Configuration
```json
{
"analytics": {
"enabled": true,
"retentionDays": 30,
"mlInsights": true
}
}
```
## ๐งช Development
```bash
git clone https://github.com/gork-labs/gorka.git
cd gorka/servers/secondbrain-mcp
npm install
npm run build
npm test
```
### Running Tests
```bash
# Run all tests
npm test
# Run with coverage
npm run test:coverage
# Watch mode
npm run test:watch
```
## ๐ Requirements
- **Node.js**: >= 18.0.0
- **API Keys**: OpenAI and/or Anthropic API access
- **MCP Client**: Compatible MCP client (GitHub Copilot, Claude Desktop, etc.)
## ๐ค Contributing
1. Fork the repository
2. Create a feature branch
3. Make your changes
4. Add tests for new functionality
5. Ensure all tests pass
6. Submit a pull request
## ๐ License
MIT License - see [LICENSE](LICENSE) file for details.
## ๐ Links
- [GitHub Repository](https://github.com/gork-labs/gorka)
- [Model Context Protocol](https://modelcontextprotocol.io/)
- [Gorka AI Agent System](https://github.com/gork-labs/gorka)
- [Issue Tracker](https://github.com/gork-labs/gorka/issues)
## โญ Support
If you find SecondBrain MCP Server useful, please consider:
- โญ Starring the repository
- ๐ Reporting issues
- ๐ก Suggesting improvements
- ๐ค Contributing code
---
**Built with โค๏ธ by the Gorka team** | **Powered by Model Context Protocol**