UNPKG

@genkit-ai/googleai

Version:

Genkit AI framework plugin for Google AI APIs, including Gemini APIs.

335 lines (329 loc) 16.8 kB
import { ModelReference, z, EmbedderReference, Genkit, EmbedderAction } from 'genkit'; import { GenkitPlugin } from 'genkit/plugin'; import { GeminiConfigSchema, SUPPORTED_GEMINI_MODELS } from './gemini.mjs'; export { GeminiConfig, GeminiVersionString, gemini, gemini10Pro, gemini15Flash, gemini15Flash8b, gemini15Pro, gemini20Flash, gemini20FlashExp, gemini20FlashLite, gemini20ProExp0205, gemini25FlashLite, gemini25FlashPreview0417, gemini25ProExp0325, gemini25ProPreview0325 } from './gemini.mjs'; import { KNOWN_IMAGEN_MODELS, ImagenConfigSchema } from './imagen.mjs'; import { KNOWN_VEO_MODELS, VeoConfigSchema } from './veo.mjs'; import '@google/generative-ai'; import 'genkit/model'; /** * Copyright 2024 Google LLC * * Licensed under the Apache License, Version 2.0 (the "License"); * you may not use this file except in compliance with the License. * You may obtain a copy of the License at * * http://www.apache.org/licenses/LICENSE-2.0 * * Unless required by applicable law or agreed to in writing, software * distributed under the License is distributed on an "AS IS" BASIS, * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. * See the License for the specific language governing permissions and * limitations under the License. */ /** * @deprecated */ interface PluginOptions { /** * Provide the API key to use to authenticate with the Gemini API. By * default, an API key must be provided explicitly here or through the * `GEMINI_API_KEY` or `GOOGLE_API_KEY` environment variables. * * If `false` is explicitly passed, the plugin will be configured to * expect an `apiKey` option to be provided to the model config at * call time. **/ apiKey?: string | false; apiVersion?: string | string[]; baseUrl?: string; models?: (ModelReference</** @ignore */ typeof GeminiConfigSchema> | string)[]; experimental_debugTraces?: boolean; } /** * Google Gemini Developer API plugin. * @deprecated */ declare function googleAIPlugin(options?: PluginOptions): GenkitPlugin; /** * @deprecated */ type GoogleAIPlugin = { (params?: PluginOptions): GenkitPlugin; model(name: keyof typeof SUPPORTED_GEMINI_MODELS | (`gemini-${string}` & {}), config?: z.infer<typeof GeminiConfigSchema>): ModelReference<typeof GeminiConfigSchema>; model(name: KNOWN_IMAGEN_MODELS | (`imagen${string}` & {}), config?: z.infer<typeof ImagenConfigSchema>): ModelReference<typeof ImagenConfigSchema>; model(name: KNOWN_VEO_MODELS | (`veo${string}` & {}), config?: z.infer<typeof VeoConfigSchema>): ModelReference<typeof VeoConfigSchema>; model(name: string, config?: any): ModelReference<z.ZodTypeAny>; embedder(name: string, config?: GeminiEmbeddingConfig): EmbedderReference<typeof GeminiEmbeddingConfigSchema>; }; /** * Google Gemini Developer API plugin. * @deprecated Please use `import { googleAI } from '@genkit-ai/google-genai';` instead. Replace model constants with e.g. googleAI.model('gemini-2.5-pro') */ declare const googleAI: GoogleAIPlugin; /** * Copyright 2024 Google LLC * * Licensed under the Apache License, Version 2.0 (the "License"); * you may not use this file except in compliance with the License. * You may obtain a copy of the License at * * http://www.apache.org/licenses/LICENSE-2.0 * * Unless required by applicable law or agreed to in writing, software * distributed under the License is distributed on an "AS IS" BASIS, * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. * See the License for the specific language governing permissions and * limitations under the License. */ /** * @deprecated */ declare const TaskTypeSchema: z.ZodEnum<["RETRIEVAL_DOCUMENT", "RETRIEVAL_QUERY", "SEMANTIC_SIMILARITY", "CLASSIFICATION", "CLUSTERING"]>; /** * @deprecated */ type TaskType = z.infer<typeof TaskTypeSchema>; /** * @deprecated */ declare const GeminiEmbeddingConfigSchema: z.ZodObject<{ /** Override the API key provided at plugin initialization. */ apiKey: z.ZodOptional<z.ZodString>; /** * The `task_type` parameter is defined as the intended downstream application to help the model * produce better quality embeddings. **/ taskType: z.ZodOptional<z.ZodEnum<["RETRIEVAL_DOCUMENT", "RETRIEVAL_QUERY", "SEMANTIC_SIMILARITY", "CLASSIFICATION", "CLUSTERING"]>>; title: z.ZodOptional<z.ZodString>; version: z.ZodOptional<z.ZodString>; /** * The `outputDimensionality` parameter allows you to specify the dimensionality of the embedding output. * By default, the model generates embeddings with 768 dimensions. Models such as * `text-embedding-004`, `text-embedding-005`, and `text-multilingual-embedding-002` * allow the output dimensionality to be adjusted between 1 and 768. * By selecting a smaller output dimensionality, users can save memory and storage space, leading to more efficient computations. **/ outputDimensionality: z.ZodOptional<z.ZodNumber>; }, "strip", z.ZodTypeAny, { apiKey?: string | undefined; taskType?: "RETRIEVAL_DOCUMENT" | "RETRIEVAL_QUERY" | "SEMANTIC_SIMILARITY" | "CLASSIFICATION" | "CLUSTERING" | undefined; title?: string | undefined; version?: string | undefined; outputDimensionality?: number | undefined; }, { apiKey?: string | undefined; taskType?: "RETRIEVAL_DOCUMENT" | "RETRIEVAL_QUERY" | "SEMANTIC_SIMILARITY" | "CLASSIFICATION" | "CLUSTERING" | undefined; title?: string | undefined; version?: string | undefined; outputDimensionality?: number | undefined; }>; /** * @deprecated */ type GeminiEmbeddingConfig = z.infer<typeof GeminiEmbeddingConfigSchema>; /** * @deprecated */ declare const textEmbeddingGecko001: EmbedderReference<z.ZodObject<{ /** Override the API key provided at plugin initialization. */ apiKey: z.ZodOptional<z.ZodString>; /** * The `task_type` parameter is defined as the intended downstream application to help the model * produce better quality embeddings. **/ taskType: z.ZodOptional<z.ZodEnum<["RETRIEVAL_DOCUMENT", "RETRIEVAL_QUERY", "SEMANTIC_SIMILARITY", "CLASSIFICATION", "CLUSTERING"]>>; title: z.ZodOptional<z.ZodString>; version: z.ZodOptional<z.ZodString>; /** * The `outputDimensionality` parameter allows you to specify the dimensionality of the embedding output. * By default, the model generates embeddings with 768 dimensions. Models such as * `text-embedding-004`, `text-embedding-005`, and `text-multilingual-embedding-002` * allow the output dimensionality to be adjusted between 1 and 768. * By selecting a smaller output dimensionality, users can save memory and storage space, leading to more efficient computations. **/ outputDimensionality: z.ZodOptional<z.ZodNumber>; }, "strip", z.ZodTypeAny, { apiKey?: string | undefined; taskType?: "RETRIEVAL_DOCUMENT" | "RETRIEVAL_QUERY" | "SEMANTIC_SIMILARITY" | "CLASSIFICATION" | "CLUSTERING" | undefined; title?: string | undefined; version?: string | undefined; outputDimensionality?: number | undefined; }, { apiKey?: string | undefined; taskType?: "RETRIEVAL_DOCUMENT" | "RETRIEVAL_QUERY" | "SEMANTIC_SIMILARITY" | "CLASSIFICATION" | "CLUSTERING" | undefined; title?: string | undefined; version?: string | undefined; outputDimensionality?: number | undefined; }>>; /** * @deprecated */ declare const textEmbedding004: EmbedderReference<z.ZodObject<{ /** Override the API key provided at plugin initialization. */ apiKey: z.ZodOptional<z.ZodString>; /** * The `task_type` parameter is defined as the intended downstream application to help the model * produce better quality embeddings. **/ taskType: z.ZodOptional<z.ZodEnum<["RETRIEVAL_DOCUMENT", "RETRIEVAL_QUERY", "SEMANTIC_SIMILARITY", "CLASSIFICATION", "CLUSTERING"]>>; title: z.ZodOptional<z.ZodString>; version: z.ZodOptional<z.ZodString>; /** * The `outputDimensionality` parameter allows you to specify the dimensionality of the embedding output. * By default, the model generates embeddings with 768 dimensions. Models such as * `text-embedding-004`, `text-embedding-005`, and `text-multilingual-embedding-002` * allow the output dimensionality to be adjusted between 1 and 768. * By selecting a smaller output dimensionality, users can save memory and storage space, leading to more efficient computations. **/ outputDimensionality: z.ZodOptional<z.ZodNumber>; }, "strip", z.ZodTypeAny, { apiKey?: string | undefined; taskType?: "RETRIEVAL_DOCUMENT" | "RETRIEVAL_QUERY" | "SEMANTIC_SIMILARITY" | "CLASSIFICATION" | "CLUSTERING" | undefined; title?: string | undefined; version?: string | undefined; outputDimensionality?: number | undefined; }, { apiKey?: string | undefined; taskType?: "RETRIEVAL_DOCUMENT" | "RETRIEVAL_QUERY" | "SEMANTIC_SIMILARITY" | "CLASSIFICATION" | "CLUSTERING" | undefined; title?: string | undefined; version?: string | undefined; outputDimensionality?: number | undefined; }>>; /** * @deprecated */ declare const geminiEmbedding001: EmbedderReference<z.ZodObject<{ /** Override the API key provided at plugin initialization. */ apiKey: z.ZodOptional<z.ZodString>; /** * The `task_type` parameter is defined as the intended downstream application to help the model * produce better quality embeddings. **/ taskType: z.ZodOptional<z.ZodEnum<["RETRIEVAL_DOCUMENT", "RETRIEVAL_QUERY", "SEMANTIC_SIMILARITY", "CLASSIFICATION", "CLUSTERING"]>>; title: z.ZodOptional<z.ZodString>; version: z.ZodOptional<z.ZodString>; /** * The `outputDimensionality` parameter allows you to specify the dimensionality of the embedding output. * By default, the model generates embeddings with 768 dimensions. Models such as * `text-embedding-004`, `text-embedding-005`, and `text-multilingual-embedding-002` * allow the output dimensionality to be adjusted between 1 and 768. * By selecting a smaller output dimensionality, users can save memory and storage space, leading to more efficient computations. **/ outputDimensionality: z.ZodOptional<z.ZodNumber>; }, "strip", z.ZodTypeAny, { apiKey?: string | undefined; taskType?: "RETRIEVAL_DOCUMENT" | "RETRIEVAL_QUERY" | "SEMANTIC_SIMILARITY" | "CLASSIFICATION" | "CLUSTERING" | undefined; title?: string | undefined; version?: string | undefined; outputDimensionality?: number | undefined; }, { apiKey?: string | undefined; taskType?: "RETRIEVAL_DOCUMENT" | "RETRIEVAL_QUERY" | "SEMANTIC_SIMILARITY" | "CLASSIFICATION" | "CLUSTERING" | undefined; title?: string | undefined; version?: string | undefined; outputDimensionality?: number | undefined; }>>; /** * @deprecated */ declare const SUPPORTED_MODELS: { 'embedding-001': EmbedderReference<z.ZodObject<{ /** Override the API key provided at plugin initialization. */ apiKey: z.ZodOptional<z.ZodString>; /** * The `task_type` parameter is defined as the intended downstream application to help the model * produce better quality embeddings. **/ taskType: z.ZodOptional<z.ZodEnum<["RETRIEVAL_DOCUMENT", "RETRIEVAL_QUERY", "SEMANTIC_SIMILARITY", "CLASSIFICATION", "CLUSTERING"]>>; title: z.ZodOptional<z.ZodString>; version: z.ZodOptional<z.ZodString>; /** * The `outputDimensionality` parameter allows you to specify the dimensionality of the embedding output. * By default, the model generates embeddings with 768 dimensions. Models such as * `text-embedding-004`, `text-embedding-005`, and `text-multilingual-embedding-002` * allow the output dimensionality to be adjusted between 1 and 768. * By selecting a smaller output dimensionality, users can save memory and storage space, leading to more efficient computations. **/ outputDimensionality: z.ZodOptional<z.ZodNumber>; }, "strip", z.ZodTypeAny, { apiKey?: string | undefined; taskType?: "RETRIEVAL_DOCUMENT" | "RETRIEVAL_QUERY" | "SEMANTIC_SIMILARITY" | "CLASSIFICATION" | "CLUSTERING" | undefined; title?: string | undefined; version?: string | undefined; outputDimensionality?: number | undefined; }, { apiKey?: string | undefined; taskType?: "RETRIEVAL_DOCUMENT" | "RETRIEVAL_QUERY" | "SEMANTIC_SIMILARITY" | "CLASSIFICATION" | "CLUSTERING" | undefined; title?: string | undefined; version?: string | undefined; outputDimensionality?: number | undefined; }>>; 'text-embedding-004': EmbedderReference<z.ZodObject<{ /** Override the API key provided at plugin initialization. */ apiKey: z.ZodOptional<z.ZodString>; /** * The `task_type` parameter is defined as the intended downstream application to help the model * produce better quality embeddings. **/ taskType: z.ZodOptional<z.ZodEnum<["RETRIEVAL_DOCUMENT", "RETRIEVAL_QUERY", "SEMANTIC_SIMILARITY", "CLASSIFICATION", "CLUSTERING"]>>; title: z.ZodOptional<z.ZodString>; version: z.ZodOptional<z.ZodString>; /** * The `outputDimensionality` parameter allows you to specify the dimensionality of the embedding output. * By default, the model generates embeddings with 768 dimensions. Models such as * `text-embedding-004`, `text-embedding-005`, and `text-multilingual-embedding-002` * allow the output dimensionality to be adjusted between 1 and 768. * By selecting a smaller output dimensionality, users can save memory and storage space, leading to more efficient computations. **/ outputDimensionality: z.ZodOptional<z.ZodNumber>; }, "strip", z.ZodTypeAny, { apiKey?: string | undefined; taskType?: "RETRIEVAL_DOCUMENT" | "RETRIEVAL_QUERY" | "SEMANTIC_SIMILARITY" | "CLASSIFICATION" | "CLUSTERING" | undefined; title?: string | undefined; version?: string | undefined; outputDimensionality?: number | undefined; }, { apiKey?: string | undefined; taskType?: "RETRIEVAL_DOCUMENT" | "RETRIEVAL_QUERY" | "SEMANTIC_SIMILARITY" | "CLASSIFICATION" | "CLUSTERING" | undefined; title?: string | undefined; version?: string | undefined; outputDimensionality?: number | undefined; }>>; 'gemini-embedding-001': EmbedderReference<z.ZodObject<{ /** Override the API key provided at plugin initialization. */ apiKey: z.ZodOptional<z.ZodString>; /** * The `task_type` parameter is defined as the intended downstream application to help the model * produce better quality embeddings. **/ taskType: z.ZodOptional<z.ZodEnum<["RETRIEVAL_DOCUMENT", "RETRIEVAL_QUERY", "SEMANTIC_SIMILARITY", "CLASSIFICATION", "CLUSTERING"]>>; title: z.ZodOptional<z.ZodString>; version: z.ZodOptional<z.ZodString>; /** * The `outputDimensionality` parameter allows you to specify the dimensionality of the embedding output. * By default, the model generates embeddings with 768 dimensions. Models such as * `text-embedding-004`, `text-embedding-005`, and `text-multilingual-embedding-002` * allow the output dimensionality to be adjusted between 1 and 768. * By selecting a smaller output dimensionality, users can save memory and storage space, leading to more efficient computations. **/ outputDimensionality: z.ZodOptional<z.ZodNumber>; }, "strip", z.ZodTypeAny, { apiKey?: string | undefined; taskType?: "RETRIEVAL_DOCUMENT" | "RETRIEVAL_QUERY" | "SEMANTIC_SIMILARITY" | "CLASSIFICATION" | "CLUSTERING" | undefined; title?: string | undefined; version?: string | undefined; outputDimensionality?: number | undefined; }, { apiKey?: string | undefined; taskType?: "RETRIEVAL_DOCUMENT" | "RETRIEVAL_QUERY" | "SEMANTIC_SIMILARITY" | "CLASSIFICATION" | "CLUSTERING" | undefined; title?: string | undefined; version?: string | undefined; outputDimensionality?: number | undefined; }>>; }; /** * @deprecated */ declare function defineGoogleAIEmbedder(ai: Genkit, name: string, pluginOptions: PluginOptions): EmbedderAction<any>; export { GeminiEmbeddingConfigSchema as G, type GoogleAIPlugin, type PluginOptions, SUPPORTED_MODELS as S, TaskTypeSchema as T, type TaskType as a, type GeminiEmbeddingConfig as b, defineGoogleAIEmbedder as d, googleAI as default, geminiEmbedding001, googleAI, googleAIPlugin, textEmbedding004, textEmbeddingGecko001 };