UNPKG

@genkit-ai/googleai

Version:

Genkit AI framework plugin for Google AI APIs, including Gemini APIs.

224 lines 7.63 kB
"use strict"; var __defProp = Object.defineProperty; var __getOwnPropDesc = Object.getOwnPropertyDescriptor; var __getOwnPropNames = Object.getOwnPropertyNames; var __hasOwnProp = Object.prototype.hasOwnProperty; var __export = (target, all) => { for (var name in all) __defProp(target, name, { get: all[name], enumerable: true }); }; var __copyProps = (to, from, except, desc) => { if (from && typeof from === "object" || typeof from === "function") { for (let key of __getOwnPropNames(from)) if (!__hasOwnProp.call(to, key) && key !== except) __defProp(to, key, { get: () => from[key], enumerable: !(desc = __getOwnPropDesc(from, key)) || desc.enumerable }); } return to; }; var __toCommonJS = (mod) => __copyProps(__defProp({}, "__esModule", { value: true }), mod); var src_exports = {}; __export(src_exports, { default: () => src_default, gemini: () => import_gemini.gemini, gemini10Pro: () => import_gemini.gemini10Pro, gemini15Flash: () => import_gemini.gemini15Flash, gemini15Flash8b: () => import_gemini.gemini15Flash8b, gemini15Pro: () => import_gemini.gemini15Pro, gemini20Flash: () => import_gemini.gemini20Flash, gemini20FlashExp: () => import_gemini.gemini20FlashExp, gemini20FlashLite: () => import_gemini.gemini20FlashLite, gemini20ProExp0205: () => import_gemini.gemini20ProExp0205, gemini25FlashPreview0417: () => import_gemini.gemini25FlashPreview0417, gemini25ProExp0325: () => import_gemini.gemini25ProExp0325, gemini25ProPreview0325: () => import_gemini.gemini25ProPreview0325, googleAI: () => googleAI, googleAIPlugin: () => googleAIPlugin, textEmbedding004: () => import_embedder.textEmbedding004, textEmbeddingGecko001: () => import_embedder.textEmbeddingGecko001 }); module.exports = __toCommonJS(src_exports); var import_genkit = require("genkit"); var import_logging = require("genkit/logging"); var import_model = require("genkit/model"); var import_plugin = require("genkit/plugin"); var import_common = require("./common.js"); var import_embedder = require("./embedder.js"); var import_gemini = require("./gemini.js"); var import_list_models = require("./list-models.js"); async function initializer(ai, options) { let apiVersions = ["v1"]; if (options?.apiVersion) { if (Array.isArray(options?.apiVersion)) { apiVersions = options?.apiVersion; } else { apiVersions = [options?.apiVersion]; } } if (apiVersions.includes("v1beta")) { Object.keys(import_gemini.SUPPORTED_V15_MODELS).forEach( (name) => (0, import_gemini.defineGoogleAIModel)({ ai, name, apiKey: options?.apiKey, apiVersion: "v1beta", baseUrl: options?.baseUrl, debugTraces: options?.experimental_debugTraces }) ); } if (apiVersions.includes("v1")) { Object.keys(import_gemini.SUPPORTED_V15_MODELS).forEach( (name) => (0, import_gemini.defineGoogleAIModel)({ ai, name, apiKey: options?.apiKey, apiVersion: void 0, baseUrl: options?.baseUrl, debugTraces: options?.experimental_debugTraces }) ); Object.keys(import_embedder.SUPPORTED_MODELS).forEach( (name) => (0, import_embedder.defineGoogleAIEmbedder)(ai, name, { apiKey: options?.apiKey }) ); } if (options?.models) { for (const modelOrRef of options?.models) { const modelName = typeof modelOrRef === "string" ? modelOrRef : ( // strip out the `googleai/` prefix modelOrRef.name.split("/")[1] ); const modelRef2 = typeof modelOrRef === "string" ? (0, import_gemini.gemini)(modelOrRef) : modelOrRef; (0, import_gemini.defineGoogleAIModel)({ ai, name: modelName, apiKey: options?.apiKey, baseUrl: options?.baseUrl, info: { ...modelRef2.info, label: `Google AI - ${modelName}` }, debugTraces: options?.experimental_debugTraces }); } } } async function resolver(ai, actionType, actionName, options) { switch (actionType) { case "model": resolveModel(ai, actionName, options); break; case "embedder": resolveEmbedder(ai, actionName, options); break; default: } } function resolveModel(ai, actionName, options) { const modelRef2 = (0, import_gemini.gemini)(actionName); (0, import_gemini.defineGoogleAIModel)({ ai, name: modelRef2.name, apiKey: options?.apiKey, baseUrl: options?.baseUrl, info: { ...modelRef2.info, label: `Google AI - ${actionName}` }, debugTraces: options?.experimental_debugTraces }); } function resolveEmbedder(ai, actionName, options) { (0, import_embedder.defineGoogleAIEmbedder)(ai, `googleai/${actionName}`, { apiKey: options?.apiKey }); } async function listActions(options) { const apiKey = options?.apiKey || (0, import_common.getApiKeyFromEnvVar)(); if (!apiKey) { import_logging.logger.error( "Pass in the API key or set the GEMINI_API_KEY or GOOGLE_API_KEY environment variable." ); return []; } const models = await (0, import_list_models.listModels)( options?.baseUrl || "https://generativelanguage.googleapis.com", apiKey ); return [ // Models ...models.filter((m) => m.supportedGenerationMethods.includes("generateContent")).filter((m) => !m.description || !m.description.includes("deprecated")).map((m) => { const ref = (0, import_gemini.gemini)( m.name.startsWith("models/") ? m.name.substring("models/".length) : m.name ); return (0, import_genkit.modelActionMetadata)({ name: ref.name, info: ref.info, configSchema: import_gemini.GeminiConfigSchema }); }), // Embedders ...models.filter((m) => m.supportedGenerationMethods.includes("embedContent")).filter((m) => !m.description || !m.description.includes("deprecated")).map((m) => { const name = "googleai/" + (m.name.startsWith("models/") ? m.name.substring("models/".length) : m.name); return (0, import_genkit.embedderActionMetadata)({ name, configSchema: import_embedder.GeminiEmbeddingConfigSchema, info: { dimensions: 768, label: `Google Gen AI - ${name}`, supports: { input: ["text"] } } }); }) ]; } function googleAIPlugin(options) { let listActionsCache; return (0, import_plugin.genkitPlugin)( "googleai", async (ai) => await initializer(ai, options), async (ai, actionType, actionName) => await resolver(ai, actionType, actionName, options), async () => { if (listActionsCache) return listActionsCache; listActionsCache = await listActions(options); return listActionsCache; } ); } const googleAI = googleAIPlugin; googleAI.model = (name, config) => { return (0, import_model.modelRef)({ name: `googleai/${name}`, config, configSchema: import_gemini.GeminiConfigSchema }); }; googleAI.embedder = (name, config) => { return (0, import_genkit.embedderRef)({ name: `googleai/${name}`, config, configSchema: import_embedder.GeminiEmbeddingConfigSchema }); }; var src_default = googleAI; // Annotate the CommonJS export names for ESM import in node: 0 && (module.exports = { gemini, gemini10Pro, gemini15Flash, gemini15Flash8b, gemini15Pro, gemini20Flash, gemini20FlashExp, gemini20FlashLite, gemini20ProExp0205, gemini25FlashPreview0417, gemini25ProExp0325, gemini25ProPreview0325, googleAI, googleAIPlugin, textEmbedding004, textEmbeddingGecko001 }); //# sourceMappingURL=index.js.map