UNPKG

@genkit-ai/dotprompt

Version:

Genkit AI framework `.prompt` file format and management library.

295 lines 10.1 kB
import { __async, __objRest, __spreadProps, __spreadValues } from "./chunk-RGHW4PYM.mjs"; import { definePrompt, generate, generateStream, toGenerateRequest } from "@genkit-ai/ai"; import { getCurrentSession } from "@genkit-ai/ai/session"; import { GenkitError, z } from "@genkit-ai/core"; import { parseSchema } from "@genkit-ai/core/schema"; import { runInNewSpan, setCustomMetadataAttribute, SPAN_TYPE_ATTR } from "@genkit-ai/core/tracing"; import { createHash } from "crypto"; import fm from "front-matter"; import { toFrontmatter, toMetadata } from "./metadata.js"; import { lookupPrompt, registryDefinitionKey } from "./registry.js"; import { compile } from "./template.js"; class Dotprompt { constructor(registry, options, template, action) { this.registry = registry; this.name = options.name || "untitledPrompt"; this.description = options.description; this.variant = options.variant; this.model = options.model; this.input = options.input || { schema: z.any() }; this.output = options.output; this.tools = options.tools; this.config = options.config; this.template = template; this.hash = createHash("sha256").update(JSON.stringify(this)).digest("hex"); this._render = compile(this.template, options); this._promptAction = action; } static parse(registry, name, source) { try { const fmResult = fm(source.trimStart(), { allowUnsafe: false }); return new Dotprompt( registry, __spreadProps(__spreadValues({}, toMetadata(registry, fmResult.attributes)), { name }), fmResult.body ); } catch (e) { throw new GenkitError({ source: "Dotprompt", status: "INVALID_ARGUMENT", message: `Error parsing YAML frontmatter of '${name}' prompt: ${e.stack}` }); } } static fromAction(registry, action) { var _b, _c, _d, _e; const _a = action.__action.metadata.prompt, { template } = _a, options = __objRest(_a, ["template"]); const pm = options; if ((_b = pm.input) == null ? void 0 : _b.schema) { pm.input.jsonSchema = (_c = options.input) == null ? void 0 : _c.schema; delete pm.input.schema; } if ((_d = pm.output) == null ? void 0 : _d.schema) { pm.output.jsonSchema = (_e = options.output) == null ? void 0 : _e.schema; } const prompt = new Dotprompt( registry, options, template, action ); return prompt; } /** * Renders all of the prompt's text parts into a raw string. * * @param input User input to the prompt template. * @param options Optional context and/or history for the prompt template. * @returns all of the text parts concatenated into a string. */ renderText(input, options) { const result = this.renderMessages(input, options); if (result.length !== 1) { throw new Error("Multi-message prompt can't be rendered as text."); } let out = ""; for (const part of result[0].content) { if (!part.text) { throw new Error("Multimodal prompt can't be rendered as text."); } out += part.text; } return out; } /** * Renders the prompt template into an array of messages. * * @param input User input to the prompt template * @param options optional context and/or history for the prompt template. * @returns an array of messages representing an exchange between a user and a model. */ renderMessages(input, options) { var _a, _b, _c, _d; let sessionStateData = void 0; if (getCurrentSession()) { sessionStateData = { state: (_a = getCurrentSession()) == null ? void 0 : _a.state }; } input = parseSchema(input, { schema: (_b = this.input) == null ? void 0 : _b.schema, jsonSchema: (_c = this.input) == null ? void 0 : _c.jsonSchema }); return this._render( __spreadValues(__spreadValues({}, (_d = this.input) == null ? void 0 : _d.default), input), options, sessionStateData ); } toJSON() { return __spreadProps(__spreadValues({}, toFrontmatter(this)), { template: this.template }); } define(options) { var _a, _b, _c; this._promptAction = definePrompt( this.registry, { name: registryDefinitionKey(this.name, this.variant, options == null ? void 0 : options.ns), description: (_a = options == null ? void 0 : options.description) != null ? _a : this.description, inputSchema: (_b = this.input) == null ? void 0 : _b.schema, inputJsonSchema: (_c = this.input) == null ? void 0 : _c.jsonSchema, metadata: { type: "prompt", prompt: this.toJSON() } }, (input) => __async(this, null, function* () { return toGenerateRequest(this.registry, this.render({ input })); }) ); } get promptAction() { return this._promptAction; } _generateOptions(options) { var _a, _b, _c, _d, _e, _f; const messages = this.renderMessages(options.input, { messages: options.messages, docs: options.docs }); let renderedPrompt; let renderedMessages; if (messages.length > 0 && messages[messages.length - 1].role === "user") { renderedPrompt = messages[messages.length - 1].content; renderedMessages = messages.slice(0, messages.length - 1); } else { renderedPrompt = void 0; renderedMessages = messages; } return { model: options.model || this.model, config: __spreadValues(__spreadValues({}, this.config), options.config), messages: renderedMessages, prompt: renderedPrompt, docs: options.docs, output: { format: ((_a = options.output) == null ? void 0 : _a.format) || ((_b = this.output) == null ? void 0 : _b.format) || void 0, schema: ((_c = options.output) == null ? void 0 : _c.schema) || ((_d = this.output) == null ? void 0 : _d.schema), jsonSchema: ((_e = options.output) == null ? void 0 : _e.jsonSchema) || ((_f = this.output) == null ? void 0 : _f.jsonSchema) }, tools: (options.tools || []).concat(this.tools || []), streamingCallback: options.streamingCallback, returnToolRequests: options.returnToolRequests, use: options.use }; } /** * Renders the prompt template based on user input. * * @param opt Options for the prompt template, including user input variables and custom model configuration options. * @returns a `GenerateOptions` object to be used with the `generate()` function from @genkit-ai/ai. */ render(opt) { return this._generateOptions(opt); } renderInNewSpan(opt) { return __async(this, null, function* () { const spanName = this.variant ? `${this.name}.${this.variant}` : this.name; return runInNewSpan( { metadata: { name: spanName, input: opt }, labels: { [SPAN_TYPE_ATTR]: "dotprompt" } }, (metadata) => __async(this, null, function* () { setCustomMetadataAttribute("prompt_fingerprint", this.hash); const generateOptions = this._generateOptions(opt); metadata.output = generateOptions; return generateOptions; }) ); }); } /** * Generates a response by rendering the prompt template with given user input and then calling the model. * * @param opt Options for the prompt template, including user input variables and custom model configuration options. * @returns the model response as a promise of `GenerateResponse`. */ generate(opt) { return __async(this, null, function* () { const renderedOpts = this.renderInNewSpan(opt); return generate(this.registry, renderedOpts); }); } /** * Generates a streaming response by rendering the prompt template with given user input and then calling the model. * * @param opt Options for the prompt template, including user input variables and custom model configuration options. * @returns the model response as a promise of `GenerateStreamResponse`. */ generateStream(opt) { return __async(this, null, function* () { const renderedOpts = yield this.renderInNewSpan(opt); return generateStream(this.registry, renderedOpts); }); } } class DotpromptRef { constructor(name, options) { this.name = name; this.variant = options == null ? void 0 : options.variant; this.dir = options == null ? void 0 : options.dir; } /** Loads the prompt which is referenced. */ loadPrompt(registry) { return __async(this, null, function* () { if (this._prompt) return this._prompt; this._prompt = yield lookupPrompt( registry, this.name, this.variant, this.dir ); return this._prompt; }); } /** * Generates a response by rendering the prompt template with given user input and then calling the model. * * @param opt Options for the prompt template, including user input variables and custom model configuration options. * @returns the model response as a promise of `GenerateResponse`. */ generate(registry, opt) { return __async(this, null, function* () { const prompt = yield this.loadPrompt(registry); return prompt.generate(opt); }); } /** * Renders the prompt template based on user input. * * @param opt Options for the prompt template, including user input variables and custom model configuration options. * @returns a `GenerateOptions` object to be used with the `generate()` function from @genkit-ai/ai. */ render(registry, opt) { return __async(this, null, function* () { const prompt = yield this.loadPrompt(registry); return prompt.render(opt); }); } } function defineDotprompt(registry, options, template) { const prompt = new Dotprompt(registry, options, template); prompt.define({ description: options.description }); return prompt; } export { Dotprompt, DotpromptRef, defineDotprompt }; //# sourceMappingURL=prompt.mjs.map