@genkit-ai/ai
Version:
Genkit AI framework generative AI APIs.
140 lines • 4.1 kB
JavaScript
import { defineAction, z } from "@genkit-ai/core";
import { Document, DocumentDataSchema } from "./document.js";
const EmbeddingSchema = z.object({
embedding: z.array(z.number()),
metadata: z.record(z.string(), z.unknown()).optional()
});
const EmbedRequestSchema = z.object({
input: z.array(DocumentDataSchema),
options: z.any().optional()
});
const EmbedResponseSchema = z.object({
embeddings: z.array(EmbeddingSchema)
// TODO: stats, etc.
});
function withMetadata(embedder, configSchema) {
const withMeta = embedder;
withMeta.__configSchema = configSchema;
return withMeta;
}
function defineEmbedder(registry, options, runner) {
const embedder = defineAction(
registry,
{
actionType: "embedder",
name: options.name,
inputSchema: options.configSchema ? EmbedRequestSchema.extend({
options: options.configSchema.optional()
}) : EmbedRequestSchema,
outputSchema: EmbedResponseSchema,
metadata: {
type: "embedder",
info: options.info
}
},
(i) => runner(
i.input.map((dd) => new Document(dd)),
i.options
)
);
const ewm = withMetadata(
embedder,
options.configSchema
);
return ewm;
}
async function embed(registry, params) {
let embedder = await resolveEmbedder(registry, params);
if (!embedder.embedderAction) {
let embedderId;
if (typeof params.embedder === "string") {
embedderId = params.embedder;
} else if (params.embedder?.__action?.name) {
embedderId = params.embedder.__action.name;
} else {
embedderId = params.embedder.name;
}
throw new Error(`Unable to resolve embedder ${embedderId}`);
}
const response = await embedder.embedderAction({
input: typeof params.content === "string" ? [Document.fromText(params.content, params.metadata)] : [params.content],
options: {
version: embedder.version,
...embedder.config,
...params.options
}
});
return response.embeddings;
}
async function resolveEmbedder(registry, params) {
if (typeof params.embedder === "string") {
return {
embedderAction: await registry.lookupAction(
`/embedder/${params.embedder}`
)
};
} else if (Object.hasOwnProperty.call(params.embedder, "__action")) {
return {
embedderAction: params.embedder
};
} else if (Object.hasOwnProperty.call(params.embedder, "name")) {
const ref = params.embedder;
return {
embedderAction: await registry.lookupAction(
`/embedder/${params.embedder.name}`
),
config: {
...ref.config
},
version: ref.version
};
}
throw new Error(`failed to resolve embedder ${params.embedder}`);
}
async function embedMany(registry, params) {
let embedder;
if (typeof params.embedder === "string") {
embedder = await registry.lookupAction(`/embedder/${params.embedder}`);
} else if (Object.hasOwnProperty.call(params.embedder, "info")) {
embedder = await registry.lookupAction(
`/embedder/${params.embedder.name}`
);
} else {
embedder = params.embedder;
}
if (!embedder) {
throw new Error("Unable to utilize the provided embedder");
}
const response = await embedder({
input: params.content.map(
(i) => typeof i === "string" ? Document.fromText(i, params.metadata) : i
),
options: params.options
});
return response.embeddings;
}
const EmbedderInfoSchema = z.object({
/** Friendly label for this model (e.g. "Google AI - Gemini Pro") */
label: z.string().optional(),
/** Supported model capabilities. */
supports: z.object({
/** Model can input this type of data. */
input: z.array(z.enum(["text", "image", "video"])).optional(),
/** Model can support multiple languages */
multilingual: z.boolean().optional()
}).optional(),
/** Embedding dimension */
dimensions: z.number().optional()
});
function embedderRef(options) {
return { ...options };
}
export {
EmbedderInfoSchema,
EmbeddingSchema,
defineEmbedder,
embed,
embedMany,
embedderRef
};
//# sourceMappingURL=embedder.mjs.map