UNPKG

@gaiaverse/semantic-turning-point-detector

Version:

Detects key semantic turning points in conversations using recursive semantic distance analysis. Ideal for conversation analysis, dialogue segmentation, insight detection, and AI-assisted reasoning tasks.

19 lines 879 B
import { LRUCache } from 'lru-cache'; /** * Count tokens in a given string using OpenAI-compatible tokenization. * * @param text - The text to tokenize * @param modelName - Optional model name to specify the tokenizer variant, though not used as the default is sufficient. * @returns Number of tokens */ export declare function countTokens(text: string): number; /** * Generates an embedding for a given text using the OpenAI API * This provides the vector representation for semantic distance calculation */ export declare function generateEmbedding(text: string, model?: string, cache?: LRUCache<string, Float32Array>): Promise<Float32Array>; /** * Creates a new LRU cache for embeddings with RAM limit */ export declare function createEmbeddingCache(ramLimitMB?: number, ttlSeconds?: number): LRUCache<string, Float32Array>; //# sourceMappingURL=tokensUtil.d.ts.map