UNPKG

@gaiaverse/semantic-turning-point-detector

Version:

Detects key semantic turning points in conversations using recursive semantic distance analysis. Ideal for conversation analysis, dialogue segmentation, insight detection, and AI-assisted reasoning tasks.

53 lines 2.23 kB
import { Message } from "./Message"; import { TurningPointDetectorConfig } from "./types"; /** * Defines the formatting style for replaced headings. * - 'plain': Just the heading text (removes '#' markers only). * - 'bold': Surrounds the heading text with '**'. * - 'italic': Surrounds the heading text with '*'. * - 'bold-italic': Surrounds the heading text with '***'. * - 'prefix': Prepends a specific string (defined in `headingPrefix`) to the heading text. */ export type HeadingStyle = 'plain' | 'bold' | 'italic' | 'bold-italic' | 'prefix'; /** * Configuration options for selectivelyStripMarkdown function. */ export type StripMarkdownOptions = { /** * If true, removes list markers (*, -, +, 1.) while keeping the item text. * @default false */ removeLists?: boolean; /** * Defines how heading syntax (#) should be replaced. * @default 'bold' */ headingStyle?: HeadingStyle; /** * The prefix string to use when `headingStyle` is 'prefix'. * @default 'heading: ' */ headingPrefix?: string; }; /** * Selectively removes or reformats Markdown elements like headings and optionally lists. * Headings (#) are replaced based on the specified `headingStyle`. * Lists (*, -, +, 1.) can optionally be stripped to plain text (controlled by `removeLists`). * Content remains on the same line, and overall newlines are preserved. * * @param markdown The input Markdown string. * @param options Configuration options for stripping and formatting. * @returns The processed string. */ export declare function selectivelyStripMarkdown(markdown: string, options?: StripMarkdownOptions): string; /** * A helper function that formats a given message in a form that ensures the content is not long and easily distinguishable as part of contextual information when requesting a llm or nlp model to process it. * @param semanticSettings * @param m * @param dimension * @param addHeader * @param sliceId * @returns */ export declare function returnFormattedMessageContent(semanticSettings: Partial<TurningPointDetectorConfig>, m: Message, dimension?: number, addHeader?: boolean, sliceId?: boolean): string; //# sourceMappingURL=stripContent.d.ts.map